Identification of a circulating microRNAs biomarker panel for non-invasive diagnosis of coronary artery disease: case–control study

Author:

Abdallah Hoda Y.,Hassan Ranya,Fareed Ahmed,Abdelgawad Mai,Mostafa Sally Abdallah,Mohammed Eman Abdel-Moemen

Abstract

Abstract Background Circulating microRNAs (miRNAs) are considered a hot spot of research that can be employed for monitoring and/or diagnostic purposes in coronary artery disease (CAD). Since different disease features might be reflected on altered profiles or plasma miRNAs concentrations, a combination of miRNAs can provide more reliable non-invasive biomarkers for CAD. Subjects and methods We investigated a panel of 14-miRNAs selected using bioinformatics databases and current literature searching for miRNAs involved in CAD using quantitative real-time PCR technique in 73 CAD patients compared to 73 controls followed by function and pathway enrichment analysis for the 14-miRNAs. Results Our results revealed three out of the 14 circulating miRNAs understudy; miRNAs miR133a, miR155 and miR208a were downregulated. While 11 miRNAs were up-regulated in a descending order from highest fold change to lowest: miR-182, miR-145, miR-21, miR-126, miR-200b, miR-146A, miR-205, miR-135b, miR-196b, miR-140b and, miR-223. The ROC curve analysis indicated that miR-145, miR-182, miR-133a and, miR-205 were excellent biomarkers with the highest AUCs as biomarkers in CAD. All miRNAs under study except miR-208 revealed a statistically significant relation with dyslipidemia. MiR-126 and miR-155 showed significance with BMI grade, while only miR-133a showed significance with the obese patients in general. MiR-135b and miR-140b showed a significant correlation with the Wall Motion Severity Index. Pathway enrichment analysis for the miRNAS understudy revealed pathways relevant to the fatty acid biosynthesis, ECM-receptor interaction, proteoglycans in cancer, and adherens junction. Conclusion The results of this study identified a differentially expressed circulating miRNAs signature that can discriminate CAD patients from normal subjects. These results provide new insights into the significant role of miRNAs expression associated with CAD pathogenesis.

Funder

Suez Canal University

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3