Technical advance in silico and in vitro development of a new bipolar radiofrequency ablation device for renal denervation

Author:

Pérez Noel,Muffly Karl,Saddow Stephen E.

Abstract

Abstract Background Renal denervation with radiofrequency ablation has become an accepted treatment for drug-resistant hypertension. However, there is a continuing need to develop new catheters for high-accuracy, targeted ablation. We therefore developed a radiofrequency bipolar electrode for controlled, targeted ablation through Joule heating induction between 60 and 100 °C. The bipolar design can easily be assembled into a basket catheter for deployment inside the renal artery. Methods Finite element modeling was used to determine the optimum catheter design to deliver a minimum ablation zone of 4 mm (W) × 10 mm (L) × 4 mm (H) within 60 s with a 500 kHz, 60 Vp-p signal, and 3 W maximum. The in silico model was validated with in vitro experiments using a thermochromic phantom tissue prepared with polyacrylamide gel and a thermochromic ink additive that permanently changes from pink to magenta when heated over 60 °C. Results The in vitro ablation zone closely matched the size and shape of the simulated area. The new electrode design directs the current density towards the artery walls and tissue, reducing unwanted blood temperature increases by focusing energy on the ablation zone. In contrast, the basket catheter design does not block renal flow during renal denervation. Conclusions This computational model of radiofrequency ablation can be used to estimate renal artery ablation zones for highly targeted renal denervation in patients with resistant hypertension. Furthermore, this innovative catheter has short ablation times and is one of the lowest power requirements of existing designs to perform the ablation.

Funder

Oscor, Inc.

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3