ALDH2 knockout protects against aortic dissection

Author:

Luo Chentao,Zhou Bing,Cui Yong,Liu Zhifang,Wang Shuwei

Abstract

Abstract Background The incidence and mortality of aortic dissection (AD) are increasing. In pathological studies, macrophages, T lymphocytes and dendritic cells were found in the tunica media of the aorta. Acetaldehyde dehydrogenase 2 (ALDH2) gene polymorphisms are associated with a high incidence of hypertension in Asian populations. However, there is no clear evidence of the relationship between ALDH2 and aortic dissection in Asians. The aim of this study was to investigate the incidence of aortic dissection in different ALDH2 genotypes and explore changes in the vasculature. Materials and methods Three-week-old male mice were administered freshly prepared β-aminopropionitrile solution dissolved in drinking water (1 g/kg/d) for 28 days to induce TAD. An animal ultrasound imaging system was used to observe the formation of arterial dissection and changes in cardiac function. Subsequently, mice were euthanized by cervical dislocation. The aortas were fixed for HE staining and EVG staining to observe aortic elastic fiber tears and pseudoluma formation under a microscope. Results Knockout of ALDH2 mitigated β-aminopropionitrile-induced TAD formation in animal studies. Ultrasound results showed that ALDH2 knockout reduced the degree of ascending aortic widening and the incidence of aortic dissection rupture. Pathological sections of multiple aortic segments showed that the protective effect of ALDH2 knockout was observed in not only the ascending aorta but also the aortic arch and descending aorta. The expression levels of genes related to NK CD56bright cells, Th17 cells, T cells and T helper cells were decreased in ALDH2 knockout mice treated with β-aminopropionitrile for 28 days. Conclusion ALDH2 knockout protects against aortic dissection by altering the inflammatory response and immune response and protecting elastic fibers.

Funder

the Health Science and Technology Plan of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3