Protective effects of melatonin on myocardial microvascular endothelial cell injury under hypertensive state by regulating Mst1

Author:

Wang Lingpeng,Wang Wei,Han Ruimei,Liu Yang,Wu Bin,Luo Jian

Abstract

Abstract Background This study explored the protective effects of melatonin on the hypertensive model in myocardial microvascular endothelial cells. Methods Mouse myocardial microvascular endothelial cells were intervened with angiotensin II to establish hypertensive cell model and divided into control, hypertension (HP), hypertension + adenovirus negative control (HP + Ad-NC), hypertension + adenovirus carrying Mst1 (HP + Ad-Mst1), hypertension + melatonin (HP + MT), hypertension + adenovirus negative control + melatonin (HP + Ad-NC + MT), and hypertension + adenovirus carrying Mst1 + melatonin (HP + Ad-Mst1 + MT) groups. Autophagosomes were observed by transmission electron microscope. Mitochondrial membrane potential was detected by JC-1 staining. Apoptosis was detected by flow cytometry. Oxidative stress markers of MDA, SOD and GSH-PX were measured. The expression of LC3 and p62 was detected by immunofluorescence. Expression levels of Mst1, p-Mst1, Beclin1, LC3, and P62 were detected with Western blot. Results Compared with the control group, the autophagosomes in HP, HP + Ad-Mst1, and HP + Ad-NC groups were significantly reduced. Compared with HP group, the autophagosomes in HP + Ad-Mst1 group were significantly reduced. The apoptosis of HP + MT group was significantly lower than HP group. Compared with HP + Ad-Mst1 group, the apoptosis of HP + Ad-Mst1 + MT group was significantly reduced. The ratio of JC-1 monomer in HP + MT group was significantly lower than HP group. Compared with HP + Ad-Mst1 group, the mitochondrial membrane potential of HP + Ad-Mst1 + MT group was also significantly reduced. MDA content in HP + MT group was significantly reduced, but SOD and GSH-PX activities were significantly increased. Compared with HP + Ad-Mst1 group, MDA content in HP + Ad-Mst1 + MT group was significantly reduced, whereas SOD and GSH-PX activities were increased significantly. Mst1 and p-Mst1 proteins in HP + MT group were significantly reduced. Compared with HP + Ad-Mst1 group, Mst1 and p-Mst1 in HP + Ad-Mst1 + MT group were reduced. P62 level was significantly decreased, while Beclin1 and LC3II levels were significantly increased. P62 in HP + MT group was significantly reduced, while Beclin1 and LC3II were significantly increased. Compared with HP + Ad-Mst1 group, P62 in HP + Ad-Mst1 + MT group was significantly reduced, but Beclin1 and LC3II were significantly increased. Conclusion Melatonin may inhibit apoptosis, increase mitochondrial membrane potential, and increase autophagy of myocardial microvascular endothelial cells under hypertensive state via inhibiting Mst1 expression, thereby exerting myocardial protective effect.

Funder

National Natural Science Foundation of China

Tianshan Youth Program from Department of Science and Technology of Xinjiang Uygur Autonomous Region

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3