Exploring the diagnostic effectiveness for myocardial ischaemia based on CCTA myocardial texture features

Author:

Zhao HengyuORCID,Yuan Lijie,Chen Zhishang,Liao Yuting,Lin Jiangzhou

Abstract

Abstract Background To explore the characteristics of myocardial textures on coronary computed tomography angiography (CCTA) images in patients with coronary atherosclerotic heart disease, a classification model was established, and the diagnostic effectiveness of CCTA for myocardial ischaemia patients was explored. Methods This was a retrospective analysis of the CCTA images of 155 patients with clinically diagnosed coronary heart disease from September 2019 to January 2020, 79 of whom were considered positive (myocardial ischaemia) and 76 negative (normal myocardial blood supply) according to their clinical diagnoses. By using the deep learning model-based CQK software, the myocardium was automatically segmented from the CCTA images and used to extract texture features. All patients were randomly divided into a training cohort and a test cohort at a 7:3 ratio. The Spearman correlation and least absolute shrinkage and selection operator (LASSO) method were used for feature selection. Based on the selected features of the training cohort, a multivariable logistic regression model was established. Finally, the test cohort was used to verify the regression model. Results A total of 387 features were extracted from the CCTA images of the 155 coronary heart disease patients. After performing dimensionality reduction with the Spearman correlation and LASSO, three texture features were selected. The accuracy, area under the curve, specificity, sensitivity, positive predictive value and negative predictive value of the constructed multivariable logistic regression model with the test cohort were 0.783, 0.875, 0.733, 0.875, 0.650 and 0.769, respectively. Conclusion CCTA imaging texture features of the myocardium have potential as biomarkers for diagnosing myocardial ischaemia.

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3