Shear stress improves the endothelial progenitor cell function via the CXCR7/ERK pathway axis in the coronary artery disease cases

Author:

Zhou Hua,Tu Qiang,Zhang Yan,Xie Hua Qiang,Shuai Qing Yun,Huang Xiao Chuan,Fu Jie,Cao ZhengORCID

Abstract

Abstract Background Dysfunction in the late Endothelial Progenitor Cells (EPCs) is responsible for endothelial repair in patients with Coronary Artery Disease (CAD), and the shear stress is beneficial for EPCs function. However, the impact of shear stress on the capacity of EPCs in CAD patients has not been elucidated yet. The C-X-C chemokine receptor 7/extracellular signal-regulated kinase (CXCR7)/(ERK) pathways are identified to regulate EPCs function in CAD patients. Here, we hypothesize that shear stress upregulates the CXCR7/ERK pathways, which restore the EPCs function in CAD patients. Methods The human Peripheral Blood Mononuclear Cells (PBMCs) were collected from healthy adults and CAD patients and then used for EPCs cultivation. The Lv-siRNA for human CXCR7 was transfected into induced EPCs isolated from the CAD patients. Meanwhile, the EPCs from CAD patients were subjected to shear stress generated by a biomimetic device. Next, the cell viability, migration, tube formation, and apoptosis were detected by CCK-8, Transwell assay, Matrigel, and flow cytometry, respectively. Also, the CXCR7/ERK pathways in human EPCs were analyzed by Western blotting and qRT-PCR. Result Compared to the EPCs collected from normal adults, the CAD patient-derived EPCs showed reduced in vitro vasculogenic capacity. Also, the level of CXCR7 in CAD patient-derived EPCs was significantly reduced compared to the EPCs of healthy subjects. Meanwhile, the extracellular signal-regulated kinase (ERK), which represents a CXCR7 downstream signaling pathway, had decreased phosphorylation level. The shear stress treatment augmented the CXCR7 expression and also elevated ERK phosphorylation, which is comparable to the up-regulation of CAD patient-derived EPCs function. Further, the small interfering RNA (siRNA)-mediated CXCR7 knockdown diminished the enhanced migration, adhesion, and tube formation capacity of shear stress treated CAD patient-derived EPCs. Conclusion Up-regulation of the CXCR7/ERK pathways by shear stress can be a promising new target in enhancing the vasculogenic ability of CAD patient-derived EPCs.

Funder

Natural Science Foundation of Hubei Province

Hubei Provincial Department of Education

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3