Age-related promoter-switch regulates Runx1 expression in adult rat hearts

Author:

Song Jiawei,Zhang Xiaoling,Lv Sinan,Liu Meng,Hua Xing,Yue Limin,Wang Si,He Weihong

Abstract

Abstract Background Runt-related transcription factor-1 (RUNX1), a key member of the core-binding factor family of transcription factors, has emerged as a novel therapeutic target for cardiovascular disease. There is an urgent need to fully understand the expression pattern of Runx1 in the heart and the mechanisms by which it is controlled under normal conditions and in response to disease. The expression of Runx1 is regulated at the transcriptional level by two promoters designated P1 and P2. Alternative usage of these two promoters creates differential mRNA transcripts diversified in distribution and translational potential. While the significance of P1/P2 promoter-switch in the transcriptional control of Runx1 has been highlighted in the embryogenic process, very little is known about the level of P1- and P2-specific transcripts in adult hearts, and the underlying mechanisms controlling the promoter-switch. Methods To amplify P1/P2 specific sequences in the heart, we used two different sense primers complementary to either P1 or P2 5'-regions to monitor the expression of P1/P2 transcripts. DNA methylation levels were assessed at the Runx1 promoter regions. Rats were grouped by age. Results The expression levels of both P1- and P2-derived Runx1 transcripts were decreased in older rats when compared with that in young adults, paralleled with an age-dependent decline in Runx1 protein level. Furthermore, older rats demonstrated a higher degree of DNA methylation at Runx1 promoter regions. Alternative promoter usage was observed in hearts with increased age, as reflected by altered P1:P2 mRNA ratio. Conclusion Our data demonstrate that the expression of Runx1 in the heart is age-dependent and underscore the importance of gene methylation in the promoter-mediated transcriptional control of Runx1, thereby providing new insights to the role of epigenetic regulation in the heart.

Funder

Science & Technology Department of Sichuan Province, China

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3