Predicting hypertension by obesity- and lipid-related indices in mid-aged and elderly Chinese: a nationwide cohort study from the China Health and Retirement Longitudinal Study
-
Published:2023-04-20
Issue:1
Volume:23
Page:
-
ISSN:1471-2261
-
Container-title:BMC Cardiovascular Disorders
-
language:en
-
Short-container-title:BMC Cardiovasc Disord
Author:
Li Yuqing,Gui Jiaofeng,Zhang Xiaoyun,Wang Ying,Mei Yujin,Yang Xue,Liu Haiyang,Guo Lei-lei,Li Jinlong,Lei Yunxiao,Li Xiaoping,Sun Lu,Yang Liu,Yuan Ting,Wang Congzhi,Zhang Dongmei,Wei Huanhuan,Li Jing,Liu Mingming,Hua Ying,Zhang Lin
Abstract
Abstract
Background
Currently, the study outcomes of anthropometric markers to predict the risk of hypertension are still inconsistent due to the effect of racial disparities. This study aims to investigate the most effective predictors for screening and prediction of hypertension (HTN) in the Chinese middle-aged and more elderly adult population and to predict hypertension using obesity and lipid-related markers in Chinese middle-aged and older people.
Methods
The data for the cohort study came from the China Health and Retirement Longitudinal Study (CHARLS), including 4423 middle-aged and elderly people aged 45 years or above. We examined 13 obesity- and lipid-related indices, including waist circumference (WC), body mass index (BMI), waist-height ratio (WHtR), visceral adiposity index (VAI), a body shape index (ABSI), body roundness index (BRI), lipid accumulation product index (LAP), conicity index (CI), Chinese visceral adiposity index (CVAI), triglyceride-glucose index (TyG-index) and their combined indices (TyG-BMI, TyG-WC, TyG-WHtR). To compare the capacity of each measure to forecast the probability of developing HTN, the receiver operating characteristic curve (ROC) was used to determine the usefulness of anthropometric indices for screening for HTN in the elderly and determining their cut-off value, sensitivity, specificity, and area under the curve (AUC). Association analysis of 13 obesity-related anthropometric indicators with HTN was performed using binary logistic regression analysis.
Results
During the four years, the incident rates of HTN in middle-aged and elderly men and women in China were 22.08% and 17.82%, respectively. All the above 13 indicators show a modest predictive power (AUC > 0.5), which is significant for predicting HTN in adults (middle-aged and elderly people) in China (P < 0.05). In addition, when WHtR = 0.501 (with an AUC of 0.593, and sensitivity and specificity of 63.60% and 52.60% respectively) or TYg-WHtR = 4.335 (with an AUC of 0.601, and sensitivity and specificity of 58.20% and 59.30% respectively), the effect of predicting the incidence risk of men is the best. And when WHtR = 0.548 (with an AUC of 0.609, and sensitivity and specificity of 59.50% and 56.50% respectively) or TYg-WHtR = 4.781(with an AUC of 0.617, and sensitivity and specificity of 58.10% and 60.80% respectively), the effect of predicting the incidence risk of women is the best.
Conclusions
The 13 obesity- and lipid-related indices in this study have modest significance for predicting HTN in Chinese middle-aged and elderly patients. WHtR and Tyg-WHtR are the most cost-effective indicators with moderate predictive value of the development of HTN.
Funder
National Natural Science Foundation of China National Institute on Aging World Bank Support Program for Outstanding Young Talents from the Universities and Colleges of Anhui Province
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine
Reference67 articles.
1. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42(6):1206–52. 2. Islam JY, Zaman MM, Haq SA, Ahmed S, Al-Quadir Z. Epidemiology of hypertension among Bangladeshi adults using the 2017 ACC/AHA Hypertension Clinical Practice Guidelines and Joint National Committee 7 Guidelines. J Hum Hypertens. 2018;32(10):668–80. 3. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa MA, Amann M, Anderson HR, Andrews KG, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2224–60. 4. Lu J, Lu Y, Wang X, Li X, Linderman GC, Wu C, Cheng X, Mu L, Zhang H, Liu J, et al. Prevalence, awareness, treatment, and control of hypertension in China: data from 1·7 million adults in a population-based screening study (China PEACE Million Persons Project). Lancet. 2017;390(10112):2549–58. 5. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–128.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|