Abstract
Abstract
Background
Type 1 Brugada syndrome (BrS) is a hereditary arrhythmogenic disease showing peculiar electrocardiographic (ECG) patterns, characterized by ST-segment elevation in the right precordial leads, and risk of Sudden Cardiac Death (SCD). Furthermore, although various ECG patterns are described in the literature, different individual ECG may show high-grade variability, making the diagnosis problematic. The study aims to develop an innovative system for an accurate diagnosis of Type 1 BrS based on ECG pattern recognition by Machine Learning (ML) models and blood markers analysis trough transcriptomic techniques.
Methods
The study is structured in 3 parts: (a) a retrospective study, with the first cohort of 300 anonymized ECG obtained in already diagnosed Type 1 BrS (75 spontaneous, 150 suspected) and 75 from control patients, which will be processed by ML analysis for pattern recognition; (b) a prospective study, with a cohort of 11 patients with spontaneous Type 1 BrS, 11 with drug-induced Type 1 BrS, 11 suspected BrS but negative to Na + channel blockers administration, and 11 controls, enrolled for ECG ML analysis and blood collection for transcriptomics and microvesicles analysis; (c) a validation study, with the third cohort of 100 patients (35 spontaneous and 35 drug-induced BrS, 30 controls) for ML algorithm and biomarkers testing.
Discussion
The BrAID system will help clinicians improve the diagnosis of Type 1 BrS by using multiple information, reducing the time between ECG recording and final diagnosis, integrating clinical, biochemical and ECG information thus favoring a more effective use of available resources.
Trial registration Clinical Trial.gov, NCT04641585. Registered 17 November 2020, https://clinicaltrials.gov/ct2/show/NCT04641585
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine
Reference37 articles.
1. Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol. 1992;20:1391–6.
2. Priori SG, Blomström-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, et al. ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC)Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Europace. 2015;2015:1601–87.
3. Quan X-Q, Li S, Liu R, Zheng K, Wu X-F, Tang Q. A meta-analytic review of prevalence for Brugada ECG patterns and the risk for death. Medicine (Baltimore). 2016;95:e5643.
4. Behere SP, Weindling SN. Brugada syndrome in children—stepping into unchartered territory. Ann Pediatr Cardiol. 2017;10:248–58.
5. Kapplinger JD, Tester DJ, Alders M, Benito B, Berthet M, Brugada J, et al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm. 2010;7:33–46.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献