Abstract
Abstract
Background
Mitral annulus (MA) area is derived during transthoracic echocardiography (TTE) assuming of a circular shape using the MA diameter from the apical 4 chamber (A4c) view. Since the MA is not a circular structure, we hypothesized that an elliptical model using parasternal long-axis (PLAX) and apical 2 chamber (A2c) view measured MA diameters would have better agreement with 3-dimensional transesophageal echocardiography (3D TEE) measured MA in degenerative mitral valve disease (DMVD).
Methods
Seventy-six patients with moderate-to-severe DMVD had 2D TTE and 3D TEE performed. MA area was measured retrospectively using semi-automatic modeling of 3D data (3D TEEsa) and considered as the reference method. MA diameters were measured using different 2D TTE views. MA area was calculated using assumptions of a circular or an elliptical shape. 2D TTE derived and 3D TEEsa. MA areas were compared using linear regression and Bland-Altman analysis.
Results
The median MA area measured at 3D TEEsa was 1,386 (1,293–1,673) mm2. With 2D TTE, the circular model using A4c view diameter resulted in a small systematic underestimation of MA area (6%), while the elliptical model using PLAX and A2c diameters resulted in 25% systematic underestimation. The standard deviations of the distributions of inter-method differences were wide for all 2D TTE methods (265–289 mm2) when compared to 3D TEEsa, indicating imprecision.
Conclusions
When compared with 3D TEEsa modeling of the MA as the reference, the assumption of a circular shape using A4c TTE view diameter was the method with the least systematic error to assess MA area in DMVD and moderate to severe regurgitation.
Publisher
Springer Science and Business Media LLC