Author:
Lang Zhao,Han Xiaoguang,Fan Mingxing,Liu Yajun,He Da,Tian Wei
Abstract
Abstract
Background
To evaluate the accuracy of screw placement using the TiRobot surgical robot in the Harms procedure and to assess the clinical outcomes of this technique.
Methods
This retrospective study included 21 patients with atlantoaxial instability treated by posterior atlantoaxial internal fixation (Harms procedure) using the TiRobot surgical robot between March 2016 and June 2021. The precision of screw placement, perioperative parameters and clinical outcomes were recorded. Screw placement was assessed based on intraoperative guiding pin accuracy measurements on intraoperative C-arm cone-beam computed tomography (CT) images using overlay technology and the incidence of screw encroachment identified on CT images.
Results
Among the 21 patients, the mean age was 44.8 years, and the causes of atlantoaxial instability were os odontoideum (n = 11), rheumatoid arthritis (n = 2), unknown pathogenesis (n = 3), and type II odontoid fracture (n = 5). A total of 82 screws were inserted with robotic assistance. From intraoperative guiding pin accuracy measurements, the average translational and angular deviations were 1.52 ± 0.35 mm (range 1.14–2.25 mm) and 2.25° ± 0.45° (range 1.73°–3.20º), respectively. Screw placement was graded as A for 80.5% of screws, B for 15.9%, and C for 3.7%. No complications related to screw misplacement were observed. After the 1-year follow-up, all patients with a neurological deficit experienced neurological improvement based on Nurick Myelopathy Scale scores, and all patients with preoperative neck pain reported improvement based on Visual Analog Scale scores.
Conclusions
Posterior atlantoaxial internal fixation using the Harms technique assisted by a 3D-based navigation robot is safe, accurate, and effective for treating atlantoaxial instability.
Funder
Beijing Natural Science Foundation
Beijing Jishuitan Hospital Elite Young Scholar Programme
Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. Panda S, Ravishankar S, Nagaraja D. Bilateral vertebral artery dissection caused by atlantoaxial dislocation. J Assoc Physicians India. 2010;58:187–9.
2. Yin Q, Ai F, Zhang K, Chang Y, Xia H, Wu Z, et al. Irreducible anterior atlantoaxial dislocation: one-stage treatment with a transoral atlantoaxial reduction plate fixation and fusion. Report of 5 cases and review of the literature. Spine. 2005;30:E375–81.
3. Goel A, Laheri V. Plate and screw fixation for atlanto-axial subluxation. Acta Neurochir (Wien). 1994;129:47–53.
4. Harms J, Melcher RP. Posterior C1–C2 fusion with polyaxial screw and rod fixation. Spine. 2001;26:2467–71.
5. Du JY, Aichmair A, Kueper J, Wright T, Lebl DR. Biomechanical analysis of screw constructs for atlantoaxial fixation in cadavers: a systematic review and meta-analysis. J Neurosurg Spine. 2015;22:151–61.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献