Abstract
Abstract
Background
Anastomotic leakage has been reported to occur when the load on the anastomotic site exceeds the resistance created by sutures, staples, and early scars. It may be possible to avoid anastomotic leakage by covering and reinforcing the anastomotic site with a biocompatible material. The aim of this study was to evaluate the safety and feasibility of a novel external reinforcement device for gastrointestinal anastomosis in an experimental model.
Methods
A single pig was used in this non-survival study, and end-to-end anastomoses were created in six small bowel loops by a single-stapling technique using a circular stapler. Three of the six anastomoses were covered with a novel external reinforcement device. Air was injected, a pressure test of each anastomosis was performed, and the bursting pressure was measured.
Results
Reinforcement of the anastomotic site with the device was successfully performed in all anastomoses. The bursting pressure was 76.1 ± 5.7 mmHg in the control group, and 126.8 ± 6.8 mmHg in the device group, respectively. The bursting pressure in the device group was significantly higher than that in the control group (p = 0.0006).
Conclusions
The novel external reinforcement device was safe and feasible for reinforcing the anastomoses in the experimental model.
Publisher
Springer Science and Business Media LLC