Author:
Elayah Sadam Ahmed,Al-Watary Mohammed Qasem,Sakran Karim Ahmed,Chao Yang,Jingtao Li,Hanyao Huang,Li Yang,Shi Bing
Abstract
Abstract
Purpose
This study aimed to evaluate the efficiency of the porcine tongue for palatoplasty simulation compared to 3D-printed simulators and their surgical education role.
Materials and methods
A total of 18 senior cleft surgeons participated in a palatoplasty simulation-based workshop conducted using porcine tongue simulators and 3D-printed simulators. This workshop consisted of a didactic session followed by a hands-on simulation session. Each participant independently used both simulators to perform Furlow double-opposing Z-plasty, which was assessed and scored by senior cleft surgeons using a scoring system including organizational flexibility and ductility, anatomical design simulation, proper incision, proper suturing, and convenience of operation. A paired t test was used for data statistical analysis and a P value < 0.05 was regarded as a statistically significant difference.
Results
All senior cleft surgeons strongly agreed that the simulation-based workshop was a valuable learning experience, and both simulators were useful and easy to manipulate (P = 1.00). The results of this comparative study showed that a porcine tongue palatoplasty simulator had an effectively significant difference in terms of organizational flexibility and ductility (P = 0.04), and suturing was better than the 3D-printed palatoplasty simulator (P < 0.01). There were no significant differences between the simulators regarding anatomical design simulation (P = 0.76) and incision simulation (P = 0.65).
Conclusion
Both porcine tongue simulator and 3D-printed simulator have their unique strengths in surgical education for palatoplasty. Thus, the combined use of a porcine tongue and a 3D-printed cleft palate simulators are efficient as an educational model to practice Furlow double-opposing Z- palatoplasty. The porcine tongue simulators are superior in terms of organizational flexibility, ductility, and suturing simulators, while with the 3D-printed simulator, various palatoplasty techniques can be repeatedly practiced with better-simulated face and oral cavity.
Funder
Construction of a universal platform for practical teaching of maxillofacial surgery based on medical engineering intersection to L. Yang
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献