Micromotion-based balanced drilling technology to increase near cortical strain

Author:

Wang Yang,Zhou Qiang,Wang Zhanchao,Wang Wei,Shen Hao,Lu Hua

Abstract

Abstract Objective A micromotion-based balanced drilling system was designed based on a locking plate (LP) and far cortical locking (FCL) concept to maintain the balance of micromotions of the cortex on both sides of a fracture region. The system was tested by axial compression test. Methods The fracture gap was set to 2 cm, and locking screws with a diameter of 5 mm and a locking plate were used to fix it. The diameters of the two sections of the stepping drill were 3.5 mm and 5.0 mm, respectively. One of the matching drilling sleeves was a standard sleeve (eccentricity, 0 mm) and the other was an eccentric sleeve (proximal eccentricity, 1 mm). A model of the fixed locking plate (AO/ASIF 33-A3) for distal femoral fractures with a gap of 2 cm was established based on data from 42 artificial femurs (SAWBONE). According to the shape of the screw holes on the cortex, the fixed fracture models were divided into a control group (standard screw hole group X126, six cases) and an experimental group (elliptical screw hole group N, 36 cases). The experimental group was further divided into six subgroups with six cases in each (N126, N136, N1256, N1356, N12356, N123456), based on the number and distribution of the screws on the proximal fracture segment. The control, N126, and N136 groups were subjected to an axial load of 500 N, and the other groups were subjected to an axial load of 1000 N. The displacements of the kinetic head, far cortex, and near cortex were measured. The integral structural stiffness of the model and the near cortical strain were calculated. The data of each group were analyzed by using a paired t-test. Results When the far cortical strains were 2%, 5%, and 10%, the near cortical strains in group N126 were 0.96%, 2.35%, and 4.62%, respectively, significantly higher than those in the control group (X126) (p < 0.05). For a different distribution of the screws, when the far cortical strains were 2%, 5%, and 10%, the near cortical strains in group N126 were significantly higher than those in group N136 (p < 0.05). However, there was no significant difference between the near cortical strains in the two groups with four screws (p > 0.05). For different numbers of screws, the near cortical strains in the three-screw groups were significantly higher than those in the four-screw groups (p < 0.05), and there was no significant difference in near cortical strains among the four-, five-, and six-screw groups (p > 0.05). Conclusion The proposed drill and matching sleeves enabled a conventional locking compression plate to be transformed into an internal fixation system to improve the balanced motion of the near and far cortices. Thus, strain on a fracture site could be controlled by adjusting the diameter of the drill and the eccentricity of the sleeve.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3