Spatial distribution of poverty in Pakistan: an asset-based approach

Author:

Ullah Kifayat,Chishti Muhammad ZubairORCID

Abstract

AbstractThe main objective of this study is to construct a valid and reliable asset index at household level by using NSER-BISP data in order to compute asset poverty for provinces, districts, and tehsils of the Pakistan. An asset index may be better measure than current income or expenditure for gauging household’s long-term capacity for buying goods and services and its potential resilience to economic shocks. The study employs multiple correspondence analysis (MCA) to construct asset index contrary to principal component analysis (PCA), as MCA provides us weights and contributions of each dimension of binary variable separately. The average MCA score is showing the level of asset-based poverty wherein higher values of index are representing higher level of poverty. The findings indicate that incidence of asset-based poverty is differently observed across provinces and within provinces through disaggregation of the MCA score at district and tehsil levels. By and large, the poorest districts of Pakistan are belonging to Baluchistan (i.e., Sherani, Kohlu, Chaghi, and Dera Bugti) and Sindh (i.e., Badin, Umerkot, Tando Muhammad Khan, and Tharparker) provinces; however, districts of Punjab (i.e., Lahore, Rawalpindi, and Gujranwala) province are found relatively lower asset-based poverty. Further, the analysis highlights the prevalence of asset-based poverty at tehsils level as well where again the tehsils of Baluchistan and Sindh provinces are bearing the highest asset-based poverty. Furthermore, the study also contributes by visualizing the prevalence of geographical asset-based poverty at district level for all four provinces of Pakistan by GIS mapping.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical)

Reference59 articles.

1. Alkire S, Foster J (2007) Recuento y medición multidimensional de la pobreza

2. Alkire S, Foster J (2011) Understandings and misunderstandings of multidimensional poverty measurement. J Econ Inequal 9(2):289–314

3. Amarasinghe U, Samad M, Anputhas M (2005) Spatial clustering of rural poverty and food insecurity in Sri Lanka. Food Policy 30(5):493–509

4. Arif GM (2015) Poverty profile of Pakistan. Benazir Income Support Programme, Islamabad

5. Asseline F (2009) World bank financial instruments to support low-carbon cities in China. In: Sustainable low-carbon city development in China, p 491

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3