Data mining twitter for COVID-19 sentiments concerning college online education

Author:

Brandon DanielORCID

Abstract

AbstractIn the last decade there has been a large increase in corporate and public reliance on social media for information, rather than on the traditional news and information sources such as print and broadcast media. People freely express their views, moods, activities, likes/dislikes on social media about diverse topics. Rather than surveys and other structured data gathering methods, text data mining is now commonly used by businesses to go through their unstructured text in the form of emails, blogs, tweets, likes, etc. to find out how their customers feel about their company and their products/services. This paper reports upon a study using Twitter (recently renamed to “X”) data to determine if meaningful and actionable information could be gained from such social media data in regard to pandemic issues and how that information compares to a traditional survey. In early 2020, the COVID-19 pandemic hit and forced colleges to move classes to an online format. While there is considerable literature in regard to using social media to communicate geo-political issues and in particular pandemics, there is not a study using social media to explore public sentiment in regard to COVID’s forcing online education upon the public. In this study, text data mining was used to gain some insight into the feeling of Twitter users in regard to the effect of COVID-19 and the switch to online education in colleges. This study found that Twitter data mining did produce actionable information similar to the traditional survey, and the study is important since its results may influence organizations to explore the use of Twitter (and possibly other social media) to obtain people’s sentiments instead of (or in addition to) traditional surveys and other traditional means of gathering such information. This paper demonstrates both the process of text data mining social media and its application to current real-world issues.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3