Author:
Guo Runzhi,Wang Shuo,Zhang Liwen,Li Linwei,Yu Qianyao,Huang Yiping,Li Weiran
Abstract
Abstract
Background
Previous studies have reported inconsistent effects of premolar extraction on the oropharynx and hyoid bones. Currently, no strong evidence is available regarding the effect of extraction on upper airway size. Hence, the aim of this study was to analyse the effects of first premolar extraction on the oropharynx and hyoid bone positions in female adult patients, and further explored differences in oropharynx and hyoid bone changes among skeletal patterns.
Methods
The study population included 40 female adult patients who did not undergo extraction and 120 female adult patients who underwent extraction of four premolars; the including patients had four distinct sagittal and vertical skeletal patterns. Cone-beam computed tomography was performed before (T0) and after (T1) orthodontic treatment. Eight oropharynx variables and five hyoid bone variables were measured using Dolphin 3D Imaging software. Paired and independent t-tests were used to analyse measurements between timepoints and groups, respectively.
Results
The oropharynx volume increased significantly in the extraction group; changes did not differ significantly between extraction and non-extraction groups. Oropharynx variables did not differ significantly at T0 among the four skeletal pattern groups. After orthodontic extraction treatment, the oropharynx volume increased significantly in the class I-norm and class I-hyper subgroups, but not in the class II-norm and class II-hyper subgroups. Significant increases were observed in the oropharynx volume and most constricted axial area from T0 to T1 in the moderate retraction group, but not in the maximum retraction group. Extraction patients exhibited significant posterior movement of the hyoid, particularly among maximum retraction patients.
Conclusions
In female adult patients, first premolar extraction tends to increase the oropharynx size and cause posterior movement of the hyoid bone, particularly in skeletal class I patients. For skeletal class II and hyperdivergent patients with a narrow oropharynx, first premolar extraction does not negatively influence oropharynx size or hyoid bone position. The differences of oropharyngeal changes between moderate retraction patients and maximum retraction patients were not significant.
Publisher
Springer Science and Business Media LLC
Subject
Neurology (clinical),General Dentistry,Otorhinolaryngology
Reference36 articles.
1. Garib DG, Bressane LB, Janson G, Gribel BF. Stability of extraction space closure. Am J Orthod Dentofac Orthop. 2016;149(1):24–30.
2. Rocha AD, Casteluci C, Ferreira FPC, Conti AC, Almeida MR, Almeida-Pedrin RR. Esthetic perception of facial profile changes after extraction and nonextraction class II treatment. Braz Oral Res. 2020;34:e003.
3. da Costa ED, Roque-Torres GD, Brasil DM, Boscolo FN, de Almeida SM, Ambrosano GMB. Correlation between the position of hyoid bone and subregions of the pharyngeal airway space in lateral cephalometry and cone beam computed tomography. Angle Orthod. 2017;87(5):688–95.
4. Jiang YY. Correlation between hyoid bone position and airway dimensions in Chinese adolescents by cone beam computed tomography analysis. Int J Oral Maxillofac Surg. 2016;45(7):914–21.
5. Chen W, Liu Y-H, Xu Q. Effect of maximum anchorage extraction on upper airway in adolescent patients with bimaxillary protrusion. Shanghai Kou Qiang Yi Xue. 2018;27(4):419–23.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献