Abstract
AbstractIn swimming, the beneficial effects of the in-water warm-up are often undermined by the long transition periods before competition (≥ 20 min). For that reason, studies comparing the effects of in-water warm-ups followed by dryland activities have been conducted in the swimming literature. This has brought conflicting evidence due to large combinations of supervised and unsupervised warm-up procedures used. Therefore, a scoping review was performed to discuss (1) why warm-up strategies are important for competitive swimming; to identify (2) what are the different warm-up approaches available in the literature, and; to establish (3) what are the main conclusions, considerations and gaps that should be addressed in further research to provide clearer guidance for interventions. The search was conducted on PubMed, Web of Science, Scopus, and SPORTDiscus databases. To be considered eligible, studies must have assessed acute short-term responses of warm-up procedures in swimmers by using randomized controlled trials or pre-post study designs. A total of 42 articles were included in this review. The effectiveness of warm-up responses was evaluated based on the inclusion or not of warm-up, the type of conditioning activity (in-water exercise, in-water exercise combined with dryland or dryland exercise only), its duration, and intensity. (1) Warm-up mechanisms have been mainly related to temperature changes associated to cardiovascular adaptations and short-term specific neuromuscular adaptations. Thus, maintaining muscle activity and body temperature during the transition phase immediately prior to competition could help swimmers' performance; (2) the most common approach before a race usually included a moderate mileage of in-water warm-up (~ 1000 m) performed at an intensity of ≤ 60% of the maximal oxygen consumption, followed by dryland protocols to keep the muscle activity and body temperature raised during the transition phase. Dryland activities could only optimize performance in sprint swimming if performed after the in-water warm-up, especially if heated clothing elements are worn. Using tethered swimming and hand-paddles during warm-ups does not provide superior muscular responses to those achieved by traditional in-water warm-ups, possibly because of acute alterations in swimming technique. In contrast, semi-tethered resisted swimming may be considered as an appropriate stimulus to generate post-activation performance enhancements; (3) nothing has yet been investigated in backstroke, butterfly or individual medley, and there is a paucity of research on the effects of experimental warm-ups over distances greater than 100 m. Women are very under-represented in warm-up research, which prevents conclusions about possible sex-regulated effects on specific responses to the warm-up procedures.
Funder
Agencia de Innovación y Desarrollo de Andalucía
Publisher
Springer Science and Business Media LLC
Subject
Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine
Reference129 articles.
1. Bishop D. Warm up I. Sports Med. 2003;33(6):439–54.
2. Bishop D. Warm up II. Sports Med. 2003;33(7):483–98.
3. McMorris T, Swain J, Lauder M, Smith N, Kelly J. Warm-up prior to undertaking a dynamic psychomotor task: does it aid performance? J Sports Med Phys Fit. 2006;46(2):328.
4. McGowan CJ, Pyne DB, Thompson KG, Rattray B. Warm-up strategies for sport and exercise: mechanisms and applications. Sports Med. 2015;45(11):1523–46.
5. Adams S, Psycharakis S. Comparison of the effects of active, passive and mixed warm ups on swimming performance. J Sports Med Phys Fit. 2014;54(5):559–65.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献