Abstract
AbstractMolecular Exercise Physiology and Omics approaches represent an important step toward synthesis and integration, the original essence of Physiology. Despite the significant progress they have introduced in Exercise Physiology (EP), some of their theoretical and methodological assumptions are still limiting the understanding of the complexity of sport-related phenomena. Based on general principles of biological evolution and supported by complex network science, this paper aims to contrast theoretical and methodological aspects of molecular and network-based approaches to EP. After explaining the main EP challenges and why sport-related phenomena cannot be understood if reduced to the molecular level, the paper proposes some methodological research advances related to the type of studied variables and measures, the data acquisition techniques, the type of data analysis and the assumed relations among physiological levels. Inspired by Network Physiology, Network Physiology of Exercise provides a new paradigm and formalism to quantify cross-communication among diverse systems across levels and time scales to improve our understanding of exercise-related phenomena and opens new horizons for exercise testing in health and disease.
Publisher
Springer Science and Business Media LLC
Subject
Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine
Reference106 articles.
1. Balagué N, Hristovski R, Vainoras A, Váquez P. Psychobiological integration during exercise. In: Davids K, Hristovski R, Araújo D, Balagué N, Button C, Passos P, editors. Complex systems in sport. Routledge; 2014. p. 62–82.
2. Vázquez P, Hristovski R, Balagué N. The path to exhaustion: time-variability properties of coordinative variables during continuous exercise. Front Physiol. 2016;7:37.
3. Enoka RM, Duchateau J. Translating fatigue to human performance. Med Sci Sports Exerc. 2016;48(11):2228–38.
4. Marcora SM, Staiano W. The limit to exercise tolerance in humans: Mind over muscle? Eur J Appl Physiol. 2010;109:763–70.
5. Noakes TD, Gibson ASC, Lambert EV. From catastrophe to complexity: a novel model of integrative central neural regulation of effort and fatigue during exercise in humans: summary and conclusions. Br J Sports Med. 2005;39(2):120-4. https://doi.org/10.1136/bjsm.2003.010330.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献