Abstract
Abstract
Background
The concept of overreaching and super compensation is widely in use by athletes and coaches seeking to maximize performance and adaptations to exercise training. The physiological aspects of acute fatigue, overreaching and non-functional overreaching are, however, not well understood, and well-defined negative physiological outcomes are missing. Instead, the concept relies heavily on performance outcomes for differentiating between the states. Recent advancements in the field of integrated exercise physiology have associated maladaptations in muscular oxidative function to high loads of exercise training.
Method
Eleven female and male subjects that exercised regularly but did not engage in high-intensity interval training (HIIT) were recruited to a 4-week long training intervention where the responses to different training loads were studied. Highly monitored HIIT sessions were performed on a cycle ergometer in a progressive fashion with the intent to accomplish a training overload. Throughout the intervention, physiological and psychological responses to HIIT were assessed, and the results were used to construct a diagnostic model that could indicate maladaptations during excessive training loads.
Results
We here use mitochondrial function as an early marker of excessive training loads and show the dynamic responses of several physiological and psychological measurements during different training loads. During HIIT, a loss of mitochondrial function was associated with reduced glycolytic, glucoregulatory and heart rate responses and increased ratings of perceived exertion in relation to several physiological measurements. The profile of mood states was highly affected after excessive training loads, whereas performance staled rather than decreased. By implementing five of the most affected and relevant measured parameters in a diagnostic model, we could successfully, and in all the subjects, identify the training loads that lead to maladaptations.
Conclusions
As mitochondrial parameters cannot be assessed without donating a muscle biopsy, this test can be used by coaches and exercise physiologists to monitor adaptation to exercise training for improving performance and optimizing the health benefits of exercise.
Clinical trial registry numberNCT04753021. Retrospectively registered 2021-02-12.
Funder
the swedish research council for sport science
Publisher
Springer Science and Business Media LLC
Subject
Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献