Interlink Between Physiological and Biomechanical Changes in the Swim-to-Cycle Transition in Triathlon Events: A Narrative Review

Author:

Ambrosini Luca,Presta Valentina,Galli Daniela,Mirandola Prisco,Vitale Marco,Gobbi Giuliana,Condello Giancarlo

Abstract

AbstractTriathlon is a multisport composed of swim, cycle, and run segments and two transition periods. The swim-to-cycle transition is considered a critical period for the change in body position and the modifications in physiological (heart rate, VO2, lactate) and biomechanical parameters (cycling power and cadence, swimming stroke rate). Therefore, the aim of this review was to summarize the current evidence regarding the physiological and biomechanical changes and their interlink during the swim-to-cycle transition hinting at practical recommendations for coaches and athletes. The influence of the swim segment on cycle one is more evident for short-distance events. Greater modifications occur in athletes of lower level. The modulation of intensity during the swim segment affects the changes in the physiological parameters (heart rate, blood lactate, core temperature), with a concomitant influence on cycling gross efficiency. However, gross efficiency could be preserved by wearing a wetsuit or by swimming in a drafting position. A higher swim leg frequency during the last meters of the segment induces a higher cadence during the cycle segment. Training should be directed to the maintenance of a swimming intensity around 80–90% of a previous maximal swim test and with the use of a positive pacing strategy. When athletes are intended to train consecutively only swim and cycle segments, for an optimal muscle activation during cycling, triathletes could adopt a lower cadence (about 60–70% of their typical cadence), although an optimal pedaling cadence depends on the level and type of athlete. Future research should be focused on the combined measurements of physiological and biomechanical parameters using an intervention study design to evaluate training adaptations on swim kick rate and their effects on cycling performance. Coaches and athletes could benefit from the understanding of the physiological and biomechanical changes occurring during the swim-to-cycle transition to optimize the overall triathlon performance.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Springer Science and Business Media LLC

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3