Modelling HIV disease process and progression in seroconversion among South Africa women: using transition-specific parametric multi-state model

Author:

Dessie Zelalem G.,Zewotir Temesgen,Mwambi Henry,North Delia

Abstract

Abstract Background HIV infected patients may experience many intermediate events including between-event transition throughout their follow up. Through modelling these transitions, we can gain a deeper understanding of HIV disease process and progression and of factors that influence the disease process and progression pathway. In this work, we present transition-specific parametric multi-state models to describe HIV disease process and progression. Methods The data is from an ongoing prospective cohort study conducted amongst adult women who were HIV-infected in KwaZulu-Natal, South Africa. Participants were enrolled during the acute HIV infection phase and then followed up during chronic infection, up to ART initiation. Results Transition specific distributions for multi-state models, including a variety of accelerated failure time (AFT) models and proportional hazards (PH) models, were presented and compared in this study. The analysis revealed that women enrolling with a CD4 count less than 350 cells/mm3 (severe and advanced disease stages) had a far lower chance of immune recovery, and a considerably higher chance of immune deterioration, compared to women enrolling with a CD4 count of 350 cells/mm3 or more (normal and mild disease stages). Our analyses also showed that older age, higher educational levels, higher scores for red blood cell counts, higher mononuclear scores, higher granulocytes scores, and higher physical health scores, all had a significant effect on a shortened time to immunological recovery, while women with many sex partners, higher viral load and larger family size had a significant effect on accelerating time to immune deterioration. Conclusion Multi-state modelling of transition-specific distributions offers a flexible tool for the study of demographic and clinical characteristics’ effects on the entire disease progression pathway. It is hoped that the article will help applied researchers to familiarize themselves with the models, including interpretation of results.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HIV‐MSS: A user‐friendly management support system for better planning of HIV care services;The International Journal of Health Planning and Management;2021-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3