Abstract
Abstract
Background
Understanding the dynamical behavior of dengue transmission is essential in designing control strategies. Mathematical models have become an important tool in describing the dynamics of a vector borne disease. Classical compartmental models are well–known method used to identify the dynamical behavior of spread of a vector borne disease. Due to use of fixed model parameters, the results of classical compartmental models do not match realistic nature. The aim of this study is to introduce time in varying model parameters, modify the classical compartmental model by improving its predictability power.
Results
In this study, per–capita vector density has been chosen as the time in varying model parameter. The dengue incidences, rainfall and temperature data in urban Colombo are analyzed using Fourier mathematical analysis tool. Further, periodic pattern of the reported dengue incidences and meteorological data and correlation of dengue incidences with meteorological data are identified to determine climate data–driven per–capita vector density parameter function. By considering that the vector dynamics occurs in faster time scale compares to host dynamics, a two dimensional data–driven compartmental model is derived with aid of classical compartmental models. Moreover, a function for per–capita vector density is introduced to capture the seasonal pattern of the disease according to the effect of climate factors in urban Colombo.
Conclusions
The two dimensional data–driven compartmental model can be used to predict weekly dengue incidences upto 4 weeks. Accuracy of the model is evaluated using relative error function and the model can be used to predict more than 75% accurate data.
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Modeling and Simulation
Reference50 articles.
1. Messina JP, Brady OJ, Scott TW, Zou C, Pigott DM, Duda KA, Bhatt S, Katzelnick L, Howes RE, Battle KE. Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol. 2014; 22(3):138–46.
2. Organization WH, for Research SP, in Tropical Diseases T, of Control of Neglected Tropical Diseases WHOD, Epidemic WHO, Alert P. Dengue: Guidelines for diagnosis, treatment, prevention and control. France: World Health Organization; 2009.
3. Sirisena PDNN, Noordeen F. Evolution of dengue in Sri Lanka–changes in the virus, vector, and climate. Int J Infect Dis. 2014; 19:6–12.
4. Ministry of Health SL. Guidelines on clinical management of dengue fever/dengue haemorrhagic fever. 2005. http://www.24hmb.com/voimages/web_image//upload/file/20140710/26641404988919789.pdf. Accessed 09 Jan 2020.
5. Radhika N, Gunathilaka N, Udayanga L, Kasturiratne A, Abeyewickreme W. Level of awareness of dengue disease among school children in gampaha district, sri lanka, and effect of school-based health education programmes on improving knowledge and practices. BioMed Res Int. 2019; 2019:8.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献