Analysis and forecast of dengue incidence in urban Colombo, Sri Lanka

Author:

Erandi KKWHORCID,Perera SSN,Mahasinghe AC

Abstract

Abstract Background Understanding the dynamical behavior of dengue transmission is essential in designing control strategies. Mathematical models have become an important tool in describing the dynamics of a vector borne disease. Classical compartmental models are well–known method used to identify the dynamical behavior of spread of a vector borne disease. Due to use of fixed model parameters, the results of classical compartmental models do not match realistic nature. The aim of this study is to introduce time in varying model parameters, modify the classical compartmental model by improving its predictability power. Results In this study, per–capita vector density has been chosen as the time in varying model parameter. The dengue incidences, rainfall and temperature data in urban Colombo are analyzed using Fourier mathematical analysis tool. Further, periodic pattern of the reported dengue incidences and meteorological data and correlation of dengue incidences with meteorological data are identified to determine climate data–driven per–capita vector density parameter function. By considering that the vector dynamics occurs in faster time scale compares to host dynamics, a two dimensional data–driven compartmental model is derived with aid of classical compartmental models. Moreover, a function for per–capita vector density is introduced to capture the seasonal pattern of the disease according to the effect of climate factors in urban Colombo. Conclusions The two dimensional data–driven compartmental model can be used to predict weekly dengue incidences upto 4 weeks. Accuracy of the model is evaluated using relative error function and the model can be used to predict more than 75% accurate data.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Modeling and Simulation

Reference50 articles.

1. Messina JP, Brady OJ, Scott TW, Zou C, Pigott DM, Duda KA, Bhatt S, Katzelnick L, Howes RE, Battle KE. Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol. 2014; 22(3):138–46.

2. Organization WH, for Research SP, in Tropical Diseases T, of Control of Neglected Tropical Diseases WHOD, Epidemic WHO, Alert P. Dengue: Guidelines for diagnosis, treatment, prevention and control. France: World Health Organization; 2009.

3. Sirisena PDNN, Noordeen F. Evolution of dengue in Sri Lanka–changes in the virus, vector, and climate. Int J Infect Dis. 2014; 19:6–12.

4. Ministry of Health SL. Guidelines on clinical management of dengue fever/dengue haemorrhagic fever. 2005. http://www.24hmb.com/voimages/web_image//upload/file/20140710/26641404988919789.pdf. Accessed 09 Jan 2020.

5. Radhika N, Gunathilaka N, Udayanga L, Kasturiratne A, Abeyewickreme W. Level of awareness of dengue disease among school children in gampaha district, sri lanka, and effect of school-based health education programmes on improving knowledge and practices. BioMed Res Int. 2019; 2019:8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3