Author:
Kakizoe Yusuke,Koizumi Yoshiki,Ikoma Yukino,Ohashi Hirofumi,Wakita Takaji,Iwami Shingo,Watashi Koichi
Abstract
AbstractSuccessful clinical drug development requires rational design of combination treatments based on preclinical data. Anti-hepatitis C virus (HCV) drugs exhibit significant diversity in antiviral effect. Dose-response assessments can be used to determine parameters profiling the diverse antiviral effect during combination treatment. In the current study, a combined experimental and mathematical approaches were used to compare and score different combinations of anti-HCV treatments. A “required concentration index” was generated and used to rank the antiviral profile of possible double- and triple-drug combinations against HCV genotype 1b and 2a. Rankings varied based on target HCV genotype. Interestingly, multidrug (double and triple) treatment not only augmented antiviral activity, but also reduced genotype-specific efficacy, suggesting another advantage of multidrug treatment. The current study provides a quantitative method for profiling drug combinations against viral genotypes, to better inform clinical drug development.
Funder
Japan Science and Technology Agency
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Modelling and Simulation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献