Abstract
Abstract
Background
There are two line notations of chemical structures that have established themselves in the field: the SMILES string and the InChI string. The InChI aims to provide a unique, or canonical, identifier for chemical structures, while SMILES strings are widely used for storage and interchange of chemical structures, but no standard exists to generate a canonical SMILES string.
Results
I describe how to use the InChI canonicalisation to derive a canonical SMILES string in a straightforward way, either incorporating the InChI normalisations (Inchified SMILES) or not (Universal SMILES). This is the first description of a method to generate canonical SMILES that takes stereochemistry into account. When tested on the 1.1 m compounds in the ChEMBL database, and a 1 m compound subset of the PubChem Substance database, no canonicalisation failures were found with Inchified SMILES. Using Universal SMILES, 99.79% of the ChEMBL database was canonicalised successfully and 99.77% of the PubChem subset.
Conclusions
The InChI canonicalisation algorithm can successfully be used as the basis for a common standard for canonical SMILES. While challenges remain – such as the development of a standard aromatic model for SMILES – the ability to create the same SMILES using different toolkits will mean that for the first time it will be possible to easily compare the chemical models used by different toolkits.
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications
Reference44 articles.
1. Warr WA: Representation of chemical structures. WIREs Comput Mol Sci. 2011, 1: 557-579. 10.1002/wcms.36.
2. Ash S, Cline MA, Homer RW, Hurst T, Smith GB: SYBYL Line Notation (SLN): A Versatile Language for Chemical Structure Representation. J Chem Inf Comput Sci. 1997, 37: 71-79. 10.1021/ci960109j.
3. Homer RW, Swanson J, Jilek RJ, Hurst T, Clark RD: SYBYL Line Notation (SLN): A Single Notation To Represent Chemical Structures, Queries, Reactions, and Virtual Libraries. J Chem Inf Model. 2008, 48: 2294-2307. 10.1021/ci7004687.
4. Bolton EE, Wang Y, Thiessen PA, Bryant SH: Chapter 12 PubChem: Integrated Platform of Small Molecules and Biological Activities. Annual Reports in Computational Chemistry. 2008, Elsevier, 217-241.
5. International Union of Pure and Applied Chemistry. Commission on the Nomenclature of Organic Chemistry, Panico R, Powell WH, Richer J-C: A guide to IUPAC nomenclature of organic compounds: recommendations 1993. 1993, Oxford; Boston; Boca Raton, Fla: Blackwell Scientific Publications; CRC Press [distributor]
Cited by
204 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献