tmChem: a high performance approach for chemical named entity recognition and normalization

Author:

Leaman Robert,Wei Chih-Hsuan,Lu Zhiyong

Abstract

Abstract Chemical compounds and drugs are an important class of entities in biomedical research with great potential in a wide range of applications, including clinical medicine. Locating chemical named entities in the literature is a useful step in chemical text mining pipelines for identifying the chemical mentions, their properties, and their relationships as discussed in the literature. We introduce the tmChem system, a chemical named entity recognizer created by combining two independent machine learning models in an ensemble. We use the corpus released as part of the recent CHEMDNER task to develop and evaluate tmChem, achieving a micro-averaged f-measure of 0.8739 on the CEM subtask (mention-level evaluation) and 0.8745 f-measure on the CDI subtask (abstract-level evaluation). We also report a high-recall combination (0.9212 for CEM and 0.9224 for CDI). tmChem achieved the highest f-measure reported in the CHEMDNER task for the CEM subtask, and the high recall variant achieved the highest recall on both the CEM and CDI tasks. We report that tmChem is a state-of-the-art tool for chemical named entity recognition and that performance for chemical named entity recognition has now tied (or exceeded) the performance previously reported for genes and diseases. Future research should focus on tighter integration between the named entity recognition and normalization steps for improved performance. The source code and a trained model for both models of tmChem is available at: http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmChem. The results of running tmChem (Model 2) on PubMed are available in PubTator: http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/PubTator

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 198 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3