Author:
Usié Anabel,Cruz Joaquim,Comas Jorge,Solsona Francesc,Alves Rui
Abstract
Abstract
Background
Small chemical molecules regulate biological processes at the molecular level. Those molecules are often involved in causing or treating pathological states. Automatically identifying such molecules in biomedical text is difficult due to both, the diverse morphology of chemical names and the alternative types of nomenclature that are simultaneously used to describe them. To address these issues, the last BioCreAtIvE challenge proposed a CHEMDNER task, which is a Named Entity Recognition (NER) challenge that aims at labelling different types of chemical names in biomedical text.
Methods
To address this challenge we tested various approaches to recognizing chemical entities in biomedical documents. These approaches range from linear Conditional Random Fields (CRFs) to a combination of CRFs with regular expression and dictionary matching, followed by a post-processing step to tag those chemical names in a corpus of Medline abstracts. We named our best performing systems CheNER.
Results
We evaluate the performance of the various approaches using the F-score statistics. Higher F-scores indicate better performance. The highest F-score we obtain in identifying unique chemical entities is 72.88%. The highest F-score we obtain in identifying all chemical entities is 73.07%. We also evaluate the F-Score of combining our system with ChemSpot, and find an increase from 72.88% to 73.83%.
Conclusions
CheNER presents a valid alternative for automated annotation of chemical entities in biomedical documents. In addition, CheNER may be used to derive new features to train newer methods for tagging chemical entities. CheNER can be downloaded from http://metres.udl.cat and included in text annotation pipelines.
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献