Author:
Sahigara Faizan,Ballabio Davide,Todeschini Roberto,Consonni Viviana
Abstract
Abstract
Background
With the growing popularity of using QSAR predictions towards regulatory purposes, such predictive models are now required to be strictly validated, an essential feature of which is to have the model’s Applicability Domain (AD) defined clearly. Although in recent years several different approaches have been proposed to address this goal, no optimal approach to define the model’s AD has yet been recognized.
Results
This study proposes a novel descriptor-based AD method which accounts for the data distribution and exploits k-Nearest Neighbours (kNN) principle to derive a heuristic decision rule. The proposed method is a three-stage procedure to address several key aspects relevant in judging the reliability of QSAR predictions. Inspired from the adaptive kernel method for probability density function estimation, the first stage of the approach defines a pattern of thresholds corresponding to the various training samples and these thresholds are later used to derive the decision rule. Criterion deciding if a given test sample will be retained within the AD is defined in the second stage of the approach. Finally, the last stage tries reflecting upon the reliability in derived results taking model statistics and prediction error into account.
Conclusions
The proposed approach addressed a novel strategy that integrated the kNN principle to define the AD of QSAR models. Relevant features that characterize the proposed AD approach include: a) adaptability to local density of samples, useful when the underlying multivariate distribution is asymmetric, with wide regions of low data density; b) unlike several kernel density estimators (KDE), effectiveness also in high-dimensional spaces; c) low sensitivity to the smoothing parameter k; and d) versatility to implement various distances measures. The results derived on a case study provided a clear understanding of how the approach works and defines the model’s AD for reliable predictions.
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Computer Graphics and Computer-Aided Design,Physical and Theoretical Chemistry,Computer Science Applications
Reference29 articles.
1. REACH. European Community Regulation on chemicals and their safe use. http://ec.europa.eu/environment/chemicals/reach/reach_intro.htm,
2. Worth AP, Bassan A, Gallegos A, Netzeva TI, Patlewicz G, Pavan M, Tsakovska I, Vracko M: The Characterisation of (Quantitative) Structure-Activity Relationships: Preliminary Guidance. ECB Report EUR 21866 EN, 95pp. 2005, Ispra, Italy: European Commission, Joint Research Centre
3. OECD. Quantitative Structure-Activity Relationships Project. http://www.oecd.org/document/23/0,3746,en_2649_34377_33957015_1_1_1_1,00.html,
4. Worth AP, van Leeuwen CJ, Hartung T: The prospects for using (Q)SARs in a changing political environment: high expectations and a key role for the Commission’s Joint Research Centre. SAR QSAR Environ Res. 2004, 15: 331-343.
5. Nikolova-Jeliazkova N, Jaworska J: An approach to determining applicability domains for QSAR group contribution models: an analysis of SRC KOWWIN. Altern Lab Anim. 2005, 33: 461-470.
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献