Overcoming inefficiencies arising due to the impact of the modifiable areal unit problem on single-aggregation disease maps

Author:

Tuson Matthew,Yap Matthew,Kok Mei Ruu,Boruff Bryan,Murray Kevin,Vickery Alistair,Turlach Berwin A.,Whyatt DavidORCID

Abstract

Abstract Background In disease mapping, fine-resolution spatial health data are routinely aggregated for various reasons, for example to protect privacy. Usually, such aggregation occurs only once, resulting in ‘single-aggregation disease maps’ whose representation of the underlying data depends on the chosen set of aggregation units. This dependence is described by the modifiable areal unit problem (MAUP). Despite an extensive literature, in practice, the MAUP is rarely acknowledged, including in disease mapping. Further, despite single-aggregation disease maps being widely relied upon to guide distribution of healthcare resources, potential inefficiencies arising due to the impact of the MAUP on such maps have not previously been investigated. Results We introduce the overlay aggregation method (OAM) for disease mapping. This method avoids dependence on any single set of aggregate-level mapping units through incorporating information from many different sets. We characterise OAM as a novel smoothing technique and show how its use results in potentially dramatic improvements in resource allocation efficiency over single-aggregation maps. We demonstrate these findings in a simulation context and through applying OAM to a real-world dataset: ischaemic stroke hospital admissions in Perth, Western Australia, in 2016. Conclusions The ongoing, widespread lack of acknowledgement of the MAUP in disease mapping suggests that unawareness of its impact is extensive or that impact is underestimated. Routine implementation of OAM can help avoid resource allocation inefficiencies associated with this phenomenon. Our findings have immediate worldwide implications wherever single-aggregation disease maps are used to guide health policy planning and service delivery.

Funder

Department of Health, Government of Western Australia

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,General Business, Management and Accounting,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3