Location inference for hidden population with online text analysis

Author:

Liu Chuchu,Cao Ziqiang,Lu Xin

Abstract

Abstract Background Understanding the geographic distribution of hidden population, such as men who have sex with men (MSM), sex workers, or injecting drug users, are of great importance for the adequate deployment of intervention strategies and public health decision making. However, due to the hard-to-access properties, e.g., lack of a sampling frame, sensitivity issue, reporting error, etc., traditional survey methods are largely limited when studying such populations. With data extracted from the very active online community of MSM in China, in this study we adopt and develop location inferring methods to achieve a high-resolution mapping of users in this community at national level. Methods We collect a comprehensive dataset from the largest sub-community related to MSM topics in Baidu Tieba, covering 628,360 MSM-related users. Based on users’ publicly available posts, we evaluate and compare the performances of mainstream location inference algorithms on the online locating problem of Chinese MSM population. To improve the inference accuracy, other approaches in natural language processing are introduced into the location extraction, such as context analysis and pattern recognition. In addition, we develop a hybrid voting algorithm (HVA-LI) by allowing different approaches to vote to determine the best inference results, which guarantees a more effective way on location inference for hidden population. Results By comparing the performances of popular inference algorithms, we find that the classic gazetteer-based algorithm has achieved better results. And in the HVA-LI algorithms, the hybrid algorithm consisting of the simple gazetteer-based method and named entity recognition (NER) is proven to be the best to deal with inferring users’ locations disclosed in short texts on online communities, improving the inferring accuracy from 50.3 to 71.3% on the MSM-related dataset. Conclusions In this study, we have explored the possibility of location inferring by analyzing textual content posted by online users. A more effective hybrid algorithm, i.e., the Gazetteer & NER algorithm is proposed, which is conducive to overcoming the sparse location labeling problem in user profiles, and can be extended to the inference of geo-statistics for other hidden populations.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,General Business, Management and Accounting,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3