Abstract
Abstract
Background
The two-week illness prevalence rate is an important and comparable indicator of health service needs. High-spatial-resolution, age-specific risk mapping of this indicator can provide valuable information for health resource allocation. The age-prevalence relationships may be different among areas of the study region, but previous geostatistical models usually ignored the spatial-age interaction.
Methods
We took Guangdong province, the province with the largest population and economy in China, as a study case. We collected two-week illness data and other potential influencing predictors from the fifth National Health Services Survey in 2013 and other open-access databases. Bayesian geostatistical binary regression models were developed with spatial-age structured random effect, based on which, high-resolution, age-specific two-week illness prevalence rates, as well as number of people reporting two-week illness, were estimated. The equality of health resource distribution was further evaluated based on the two-week illness mapping results and the health supply data.
Results
The map across all age groups revealed that the highest risk was concentrated in the central (i.e., Pearl River Delta) and northern regions of the province. These areas had a two-week illness prevalence > 25.0%, compared with 10.0–20.0% in other areas. Age-specific maps revealed significant differences in prevalence between age groups, and the age-prevalence relationships also differed across locations. In most areas, the prevalence rates decrease from age 0 to age 20, and then increase gradually. Overall, the estimated age- and population-adjusted prevalence was 16.5% [95% Bayesian credible interval (BCI): 14.5–18.6%], and the estimated total number of people reporting illness within the two-week period was 17.5 million (95% BCI: 15.5–19.8 million) in Guangdong Province. The Lorenz curve and the Gini coefficient (resulted in 0.3526) showed a moderate level of inequality in health resource distribution.
Conclusions
We developed a Bayesian geostatistical modeling framework with spatial-age structured effect to produce age-specific, high-resolution maps of the two-week illness prevalence rate and the numbers of people reporting two-week illness in Guangdong province. The methodology developed in this study can be generalized to other global regions with available relevant survey data. The mapping results will support plans for health resource allocation.
Funder
China Medical Board
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health,General Business, Management and Accounting,General Computer Science
Reference67 articles.
1. Papanicolas I, Woskie LR, Jha AK. Health care spending in the United States and other high-income countries. J Am Med Assoc. 2018;319(10):1024–39.
2. Barrera-Algarin E, Estepa-Maestre F, Sarasola-Sanchez-Serrano JL, Vallejo-Andrada A. COVID-19, neoliberalism and health systems in 30 European countries: relationship to deceases. Rev Esp Salud Public. 2020;94:e202010140.
3. Vidondo B, Oberreich J, Brockmann SO, Duerr HP, Schwehm M, Eichner M. Effects of interventions on the demand for hospital services in an influenza pandemic: a sensitivity analysis. Swiss Med Wkly. 2009;139(35–36):505–10.
4. Zhang XL, Yu Y, Xiong F, Luo L. Prediction of daily blood sampling room visits based on ARIMA and SES Model. Comput Math Method M. 2020;2020:1720134.
5. Higginson I, Whyatt J, Silvester K. Demand and capacity planning in the emergency department: how to do it. Emerg Med J. 2011;28(2):128–35.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献