Locational privacy-preserving distance computations with intersecting sets of randomly labeled grid points

Author:

Schnell RainerORCID,Klingwort JonasORCID,Farrow James M.

Abstract

Abstract Background We introduce and study a recently proposed method for privacy-preserving distance computations which has received little attention in the scientific literature so far. The method, which is based on intersecting sets of randomly labeled grid points, is henceforth denoted as ISGP allows calculating the approximate distances between masked spatial data. Coordinates are replaced by sets of hash values. The method allows the computation of distances between locations L when the locations at different points in time t are not known simultaneously. The distance between $$L_1$$ L 1 and $$L_2$$ L 2 could be computed even when $$L_2$$ L 2 does not exist at $$t_1$$ t 1 and $$L_1$$ L 1 has been deleted at $$t_2$$ t 2 . An example would be patients from a medical data set and locations of later hospitalizations. ISGP is a new tool for privacy-preserving data handling of geo-referenced data sets in general. Furthermore, this technique can be used to include geographical identifiers as additional information for privacy-preserving record-linkage. To show that the technique can be implemented in most high-level programming languages with a few lines of code, a complete implementation within the statistical programming language R is given. The properties of the method are explored using simulations based on large-scale real-world data of hospitals ($$n=850$$ n = 850 ) and residential locations ($$n=13,000$$ n = 13 , 000 ). The method has already been used in a real-world application. Results ISGP yields very accurate results. Our simulation study showed that—with appropriately chosen parameters – 99 % accuracy in the approximated distances is achieved. Conclusion We discussed a new method for privacy-preserving distance computations in microdata. The method is highly accurate, fast, has low computational burden, and does not require excessive storage.

Funder

Universität Duisburg-Essen

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,General Business, Management and Accounting,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PPTA: Privacy-Preserving Task Assignment Based on Inner Product Functional Encryption in SAM;IEEE Internet of Things Journal;2023-01-01

2. Accurate and efficient privacy-preserving string matching;International Journal of Data Science and Analytics;2022-04-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3