Author:
Giri Santosh,Brondeel Ruben,El Aarbaoui Tarik,Chaix Basile
Abstract
Abstract
Background
There has been an increased focus on active transport, but the measurement of active transport is still difficult and error-prone. Sensor data have been used to predict active transport. While heart rate data have very rarely been considered before, this study used random forests (RF) to predict transport modes using Global Positioning System (GPS), accelerometer, and heart rate data and paid attention to methodological issues related to the prediction strategy and post-processing.
Methods
The RECORD MultiSensor study collected GPS, accelerometer, and heart rate data over seven days from 126 participants living in the Ile-de-France region. RF models were built to predict transport modes for every minute (ground truth information on modes is from a GPS-based mobility survey), splitting observations between a Training dataset and a Test dataset at the participant level instead at the minute level. Moreover, several window sizes were tested for the post-processing moving average of the predicted transport mode.
Results
The minute-level prediction rate of being on trips vs. at a visited location was 90%. Final prediction rates of transport modes ranged from 65% for public transport to 95% for biking. Using minute-level observations from the same participants in the Training and Test sets (as RF spontaneously does) upwardly biases prediction rates. The inclusion of heart rate data improved prediction rates only for biking. A 3 to 5-min bandwidth moving average was optimum for a posteriori homogenization.
Conclusion
Heart rate only very slightly contributed to better predictions for specific transport modes. Moreover, our study shows that Training and Test sets must be carefully defined in RF models and that post-processing with carefully chosen moving average windows can improve predictions.
Funder
Cerema
Institut National de Prévention et d'Éducation pour la Santé
Ministère de l'Ecologie, France
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health,General Business, Management and Accounting,General Computer Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献