Abstract
Abstract
Background
Calcium carbonate antacids are potent over-the-counter antacids, made more effective by adding magnesium carbonate (as in Rennie, Bayer). However, published studies on their onset of action are scarce. Therefore, we carried out an in vitro study comparing Rennie and placebo under simulated conditions of the human stomach (artificial stomach model) to reconfirm the onset of action of Rennie.
Methods
The validated Simulator of the Human Intestinal Microbial Ecosystem apparatus (SHIME, ProDigest, Belgium) was used, comprising five reactors simulating different parts of the human gastrointestinal tract. Both Rennie and placebo were dosed at two tablets per incubation over six independent, 2-h stomach incubations each. Primary objectives: to evaluate the time required to achieve pH 3.0, 3.5, 4.0 and 4.5, as well as the maximum pH reached. Secondary objective: to evaluate pepsin activity over the entire 2-h gastric incubation.
Results
After addition of Rennie, the gastric medium reached a pH of 3.0 within 40 s. The maximum pH of 5.24 was maintained for almost 10 min. In contrast, the maximum pH with placebo was 1.28 during the entire gastric simulation. Furthermore, Rennie strongly reduced the activity of mucosa-damaging pepsin during the period of increased pH. With placebo, the lower pH resulted in consistently high loads of digested peptides, reflecting the high cumulative and instantaneous pepsin activity.
Conclusions
New data is a critical component in informed decision making. Our data confirm the high efficacy and fast onset of acid-neutralizing action of Rennie, which begins to work within seconds.
Publisher
Springer Science and Business Media LLC
Subject
Gastroenterology,General Medicine
Reference7 articles.
1. Whetsel T, Zweber A. Chapter 13: Heartburn and Dyspepsia. In: Krinsky DL, Ferreri SP, Hemstreet B, Hume AL, Newton GD, Rollins CJ, et al., editors. Handbook of Nonprescription Drugs: An Interactive Approach to Self-Care, 19th Edition. Washington, DC: American Pharmacists Association; 2017.
2. Thompson WG, International Foundation for Gastrointestinal Disorders. Diets & Treatments: Antacids. 2019. https://www.iffgd.org/diet-treatments/antacids.html. Accessed 25 June 2020.
3. Molly K, Vande Woestyne M, Verstraete W. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl Microbiol Biotechnol. 1993;39(2):254–8.
4. Mackie A, Rigby N, et al. InfoGest Consensus Method. In: Verhoeckx K, Cotter P, López-Expósito I, Kleiveland C, Lea T, Mackie A, et al., editors. The Impact of Food Bioactives on Health: in vitro and ex vivo models. Cham (CH): Springer; 2015. p. 13–22.
5. Vatier JL, Gao Z, Fu-Cheng XM, Vitre MT, Levy DA, Cohen G, et al. Evidence for the interaction between antacid and gastric mucosa using an “artificial stomach” model including gastric mucosa. J Pharmacol Exp Ther. 1992;263(3):1206–11.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献