LACC1 regulates changes in the intestinal flora in a mouse model of inflammatory bowel disease

Author:

Xu Zheng-Yuan,Wang Jin-Chun

Abstract

Abstract Background The aim of this study was to explore the mechanism whereby LACC1 regulates the intestinal flora in a mouse model of inflammatory bowel disease (IBD). Methods C57BL/6 and Lacc1−/− mice were used to establish a mouse model of IBD induced by dextran sodium sulfate (DSS). The effects of Lacc1 deletion in mice were evaluated. Changes in the body weight and stool blood were recorded daily. After 7 days of successful modeling, the mice were sacrificed, blood was collected from the eyeballs, the entire colon was dissected and separated, and the length of the colon was measured. Results Compared with the wild-type (WT) DSS model group, the Lacc1−/− DSS model group showed a significantly higher disease activity index score (P < 0.05), significantly faster weight loss (P < 0.05), and a significantly shorter colon (P < 0.05), indicating that the colonic mucosal tissue was seriously damaged in the Lacc1−/− DSS model group (P < 0.05). Serum IL-1β, IL-6, TNF-α, and IFN-γ levels were significantly higher in the Lacc1−/− DSS model group than the WT DSS model group. Principal coordinate analysis showed that there were significant microbiome differences between the WT, Lacc1−/−, WT DSS model, and Lacc1−/− DSS model groups (P < 0.05). Linear discriminant analysis effect size analysis showed that under natural conditions, Lacc1−/− mice had significant changes in their intestinal flora compared with control mice (LDA value > 3 or < 3, P < 0.05). Conclusions Lacc1 deletion aggravates DSS-induced IBD in mice.

Funder

Jiangsu Key Laboratory of Immunity and Metabolism

Publisher

Springer Science and Business Media LLC

Subject

Gastroenterology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3