A nomogram for predicting cause-specific mortality among patients with cecal carcinoma: a study based on SEER database

Author:

Zhou Qianru,Zhan Yan,Guo Jipeng

Abstract

Abstract Objective Classical Cox proportional hazard models tend to overestimate the event probability in a competing risk setup. Due to the lack of quantitative evaluation of competitive risk data for colon cancer (CC), the present study aims to evaluate the probability of CC-specific death and construct a nomogram to quantify survival differences among CC patients. Methods Data on patients diagnosed with CC between 2010 and 2015 were collected from the Surveillance, Epidemiology, and End Results Program (SEER) database. Patients were divided into a training dataset for the establishment of the model and a validation dataset to evaluate the performance the model at a ratio of 7:3. To evaluate the ability of multiple variables to predict cause-specific death in CC patients, univariate and multivariate analyses with Fine-Gray models were performed to screen the predictors of cause-specific death, and a nomogram for predicting cause-specific mortality was constructed. Then, the receiver operating characteristic (ROC) curve and the calibration curve were plotted to evaluate the prognostic performance of the nomogram. Results The dataset was randomly divided into a training (n = 16,655) dataset and a validation (n = 7,139) dataset at a ratio of 7:3. In the training dataset, variables including pathological subtypes of tumors, pathological grading (degree of differentiation), AJCC staging, T-staging, surgical type, lymph node surgery, chemotherapy, tumor deposits, lymph node metastasis, liver metastasis, and lung metastasis were identified as independent risk factors for cause-specific death of CC patients. Among these factors, the AJCC stage had the strongest predictive ability, and these features were used to construct the final model. In the training dataset, the consistency index (C-index) of the model was 0.848, and the areas under the receiver operating characteristic curve (AUC) at 1, 3, and 5 years was 0.852, 0.861, and 0.856, respectively. In the validation dataset, the C-index of the model was 0.847, and the AUC at 1 year, 3 years, and 5 years was 0.841, 0.862, and 0.852, respectively, indicating that this nomogram had an excellent and robust predictive performance. Conclusion This study can help clinical doctors make better clinical decisions and provide better support for patients with CC.

Publisher

Springer Science and Business Media LLC

Subject

Gastroenterology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3