Construction and validation of a nomogram for predicting survival in elderly patients with severe acute pancreatitis: a retrospective study from a tertiary center

Author:

Zhu Qingcheng,Lu Mingfeng,Ling Bingyu,Tan Dingyu,Wang Huihui

Abstract

Abstract Purpose There is a lack of adequate models specifically designed for elderly patients with severe acute pancreatitis (SAP) to predict the risk of death. This study aimed to develop a nomogram for predicting the overall survival of SAP in elderly patients. Methods Elderly patients diagnosed with SAP between January 1, 2017 and December 31, 2022 were included in the study. Risk factors were identified through least absolute shrinkage and selection operator regression analysis. Subsequently, a novel nomogram model was developed using multivariable logistic regression analysis. The predictive performance of the nomogram was evaluated using metrics such as the receiver operating characteristic curve, calibration curve, and decision curve analysis (DCA). Results A total of 326 patients were included in the analysis, with 260 in the survival group and 66 in the deceased group. Multivariate logistic regression indicated that age, respiratory rate, arterial pH, total bilirubin, and calcium were independent prognostic factors for the survival of SAP patients. The nomogram demonstrated a performance comparable to sequential organ failure assessment (P = 0.065). Additionally, the calibration curve showed satisfactory predictive accuracy, and the DCA highlighted the clinical application value of the nomogram. Conclusion We have identified key demographic and laboratory parameters that are associated with the survival of elderly patients with SAP. These parameters have been utilized to create a precise and user-friendly nomogram, which could be an effective and valuable clinical tool for clinicians.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3