Heat sink effect of underwater polypectomy in a porcine colon model

Author:

Tseng Chih-Wei,Hsieh Yu-Hsi,Lin Chung-Chih,Koo Malcolm,Leung Felix W.

Abstract

Abstract Background Underwater polypectomy without the need for submucosal injection has been reported. A heat-sink effect by immersing the polyp in water was proposed but no such experiment has been performed to support the claim. We compared the temperature rise on the serosal side during polypectomy between air- and water-filled colon. Method Freshly harvested porcine colons were placed in a metal tray with cautery electrode pad attached to its bottom. An upper endoscope was used with a cap and a rubber band mounted to the distal end. A mucosal site was randomly selected and identified on its serosal surface with a marker while suction was applied. Suction was applied again and a ligation band was applied to create a polyp. A cautery snare grasped the artificial polyp just below the band. An assistant placed the tip of a thermometer at the marked site on the serosal surface to record the baseline temperature before cautery and the highest temperature during polypectomy. Seven polypectomies in air and underwater were performed. Results Mean (standard deviation) baseline temperature were 23.3 (0.6) °C and 23.4 (0.6) °C in the air and water groups, respectively. The maximum rise in temperature during polypectomy was 6.1 (4.5) °C and 1.4 (1.0) °C in the air and water groups, respectively (P = 0.004). Conclusions The maximum temperature rise during polypectomy was significantly less when polypectomy was performed underwater, supporting the hypothesis that a heat-sink effect does exist during underwater polypectomy.

Publisher

Springer Science and Business Media LLC

Subject

Gastroenterology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3