Downregulation of SMOC1 is associated with progression of colorectal traditional serrated adenomas

Author:

Aoki Hironori,Takasawa Akira,Yamamoto Eiichiro,Niinuma Takeshi,Yamano Hiro-o,Harada Taku,Kubo Toshiyuki,Yorozu Akira,Kitajima Hiroshi,Ishiguro Kazuya,Kai Masahiro,Katanuma Akio,Shinohara Toshiya,Nakase Hiroshi,Sugai Tamotsu,Osanai Makoto,Suzuki Hiromu

Abstract

Abstract Background Aberrant DNA methylation is prevalent in colorectal serrated lesions. We previously reported that the CpG island of SMOC1 is frequently methylated in traditional serrated adenomas (TSAs) and colorectal cancers (CRCs) but is rarely methylated in sessile serrated lesions (SSLs). In the present study, we aimed to further characterize the expression of SMOC1 in early colorectal lesions. Methods SMOC1 expression was analyzed immunohistochemically in a series of colorectal tumors (n = 199) and adjacent normal colonic tissues (n = 112). Results SMOC1 was abundantly expressed in normal colon and SSLs while it was significantly downregulated in TSAs, advanced adenomas and cancers. Mean immunohistochemistry scores were as follows: normal colon, 24.2; hyperplastic polyp (HP), 18.9; SSL, 23.8; SSL with dysplasia (SSLD)/SSL with early invasive cancer (EIC), 15.8; TSA, 5.4; TSA with high grade dysplasia (HGD)/EIC, 4.7; non-advanced adenoma, 21.4; advanced adenoma, 11.9; EIC, 10.9. Higher levels SMOC1 expression correlated positively with proximal colon locations and flat tumoral morphology, reflecting its abundant expression in SSLs. Among TSAs that contained both flat and protruding components, levels of SMOC1 expression were significantly lower in the protruding components. Conclusion Our results suggest that reduced expression of SMOC1 is associated with progression of TSAs and conventional adenomas and that SMOC1 expression may be a biomarker for diagnosis of serrated lesions and risk prediction in colorectal tumors.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3