Machine learning-based survival rate prediction of Korean hepatocellular carcinoma patients using multi-center data

Author:

Noh Byeonggwan,Park Young Mok,Kwon Yujin,Choi Chang In,Choi Byung Kwan,Seo Kwang il,Park Yo-Han,Yang Kwangho,Lee Sunju,Ha Taeyoung,Hyon YunKyong,Yoon Myunghee

Abstract

Abstract Aim To predict survival time of Korean hepatocellular carcinoma (HCC) patients using multi-center data as a foundation for the development of a predictive artificial intelligence model according to treatment methods based on machine learning. Methods Data of patients who underwent treatment for HCC from 2008 to 2015 was provided by Korean Liver Cancer Study Group and Korea Central Cancer Registry. A total of 10,742 patients with HCC were divided into two groups, with Group I (2920 patients) confirmed on biopsy and Group II (5562 patients) diagnosed as HCC according to HCC diagnostic criteria as outlined in Korean Liver Cancer Association guidelines. The data were modeled according to features of patient clinical characteristics. Features effective in predicting survival rate were analyzed retrospectively. Various machine learning methods were used. Results Target was overall survival time, which divided into approximately 60 months (= /< 60 m, > 60 m). Target distribution in Group I (total 514 samples) was 28.8%: (148 samples) less than 60 months, 71.2% (366 samples) greater than 60 months, and in Group II (total 757 samples) was 66.6% (504 samples) less than 60 months, 33.4% (253 samples) greater than 60 months. Using NG Boost method, its accuracy was 83%, precision 84%, sensitivity 95%, and F1 score 89% for more than 60 months survival time in Group I with surgical resection. Moreover, its accuracy was 79%, precision 82%, sensitivity 87%, and F1 score 84% for less than 60 months survival time in Group II with TACE. The feature importance with gain criterion indicated that pathology, portal vein invasion, surgery, metastasis, and needle biopsy features could be explained as important factors for prediction in case of biopsy (Group I). Conclusion By developing a predictive model using machine learning algorithms to predict prognosis of HCC patients, it is possible to project optimized treatment by case according to liver function and tumor status.

Publisher

Springer Science and Business Media LLC

Subject

Gastroenterology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3