Knockout of TLR4 and TLR2 impair the nerve regeneration by delayed demyelination but not remyelination

Author:

Wu Shao-Chun,Rau Cheng-Shyuan,Lu Tsu-Hsiang,Wu Chia-Jung,Wu Yi-Chan,Tzeng Siou-Ling,Chen Yi-Chun,Hsieh Ching-Hua

Abstract

Abstract Background Knockout of either toll-like receptor 4 (TLR4) or 2 (TLR2) had been reported to delay the Wallerian degeneration after peripheral nerve injury by deterring the recruitment of the macrophages and clearance of myelin debris. However, the impact on the remyelination process is poorly understood. In this study, the effect of TLR2 and TLR4 knockout on the nerve regeneration and on the remyelination process was studied in a mouse model of sciatic nerve crush injury. Results A standard sciatic nerve crush injury by a No. 5 Jeweler forcep for consistent 30 seconds was performed in Tlr4 −/− (B6.B10ScN-Tlr4 lps-del /JthJ), Tlr2 −/− (B6.129-Tlr2tm1Kir/J) and C57BL/6 mice. One centimeter of nerve segment distal to the crushed site was harvested for western blot analysis of the myelin structure protein myelin protein zero (Mpz) and the remyelination transcription factors Oct6 and Sox10 at day 0, 3, 7, 10, 14, 17, 21, 28. Nerve segment 5-mm distal to injured site from additional groups of mice at day 10 after crush injury were subjected to semi-thin section and toluidine blue stain for a quantitative histomorphometric analysis. With less remyelinated nerves and more nerve debris, the histomorphometric analysis revealed a worse nerve regeneration following the sciatic nerve crush injury in both Tlr4 −/− and Tlr2 −/− mice than the C57BL/6 mice. Although there was a delayed expression of Sox10 but not Oct6 during remyelination, with an average 4-day delay in the demyelination process, the subsequent complete formation of Mpz during remyelination was also delayed for 4 days, implying that the impaired nerve regeneration was mainly attributed to the delayed demyelination process. Conclusions Both TLR4 and TLR2 are crucial for nerve regeneration after nerve crush injury mainly by delaying the demyelination but not the remyelination process.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Biochemistry (medical),Cell Biology,Clinical Biochemistry,Molecular Biology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3