Author:
Kumar T Peeyush,Antony Sherin,Gireesh G,George Naijil,Paulose CS
Abstract
Abstract
Curcumin, an active principle component in rhizome of Curcuma longa, has proved its merit for diabetes through its anti-oxidative and anti-inflammatory properties. This study aims at evaluating the effect of curcumin in modulating the altered dopaminergic receptors, CREB and phospholipase C in the cerebral cortex and cerebellum of STZ induced diabetic rats. Radioreceptor binding assays and gene expression was done in the cerebral cortex and cerebellum of male Wistar rats using specific ligands and probes. Total dopaminergic receptor binding parameter, Bmax showed an increase in cerebral cortex and decrease in the cerebellum of diabetic rats. Gene expression studies using real time PCR showed an increased expression of dopamine D1 and D2 receptor in the cerebral cortex of diabetic rats. In cerebellum dopamine D1 receptor was down regulated and D2 receptor showed an up regulation. Transcription factor CREB and phospholipase C showed a significant down regulation in cerebral cortex and cerebellum of diabetic rats. We report that curcumin supplementation reduces diabetes induced alteration of dopamine D1, D2 receptors, transcription factor CREB and phospholipase C to near control. Our results indicate that curcumin has a potential to regulate diabetes induced malfunctions of dopaminergic signalling, CREB and Phospholipase C expression in cerebral cortex and cerebellum and thereby improving the cognitive and emotional functions associated with these regions. Furthermore, in line with these studies an interaction between curcumin and dopaminergic receptors, CREB and phospholipase C is suggested, which attenuates the cortical and cerebellar dysfunction in diabetes. These results suggest that curcumin holds promise as an agent to prevent or treat CNS complications in diabetes.
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Biochemistry (medical),Cell Biology,Clinical Biochemistry,Molecular Biology,General Medicine,Endocrinology, Diabetes and Metabolism
Reference74 articles.
1. McCall , Millington Wr, Wurtman RJ: Metabolic fuel and amino acid transport into the brain in experimental diabetes mellitus. Proc Nadl Acad Sci USA. 1982, 97: 2881-2885.
2. Nagy R, O' Connor A, Kempers S, yeo R, Qualis C: Adaption in brain glucose uptake following recurrent hypoglycaemia. Proc Acad Sci USA. 1994, 91: 9352-69356. 10.1073/pnas.91.20.9352.
3. Brownlee M: Biochemistry and molecular cell biology of diabetic complications. Nature. 2001, 414: 813-820. 10.1038/414813a.
4. Pardridge WM: Brain metabolism: a perspective from the blood-brain barrier. Physiol Rev. 1983, 63: 1481-1535.
5. Feldman EL, Stevens MJ, Greene DA: Pathogenesis of diabetic neuropathy. Clin Neurosci. 1997, 4: 365-370.
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献