Author:
Yang You-Lan,Hsu Hsin-Te,Wang Kuo-Hsien,Han Cheng-Ying,Chen Chien-Ming,Chen Chi-Ming,Ko Wun-Chang
Abstract
AbstractBackgroundHesperetin was reported to selectively inhibit phosphodiesterase 4 (PDE4). While hesperetin-7,3'-O-dimethylether (HDME) is a synthetic liposoluble hesperetin. Therefore, we were interested in investigating its selectivity on PDE4 and binding ability on high-affinity rolipram-binding sites (HARBs)in vitro, and its effects on ovalbumin-induced airway hyperresponsivenessin vivo, and clarifying its potential for treating asthma and chronic obstructive pulmonary disease (COPD).MethodsPDE1~5 activities were measured using a two-step procedure. The binding of HDME on high-affinity rolipram-binding sites was determined by replacing 2 nM [3H]-rolipram. AHR was assessed using the FlexiVent system and barometric plethysmography. Inflammatory cells were counted using a hemocytometer. Cytokines were determined using mouse T helper (Th)1/Th2 cytokine CBA kits, and total immunoglobulin (Ig)E or IgG2alevels were done using ELISA method. Xylazine (10 mg/kg)/ketamine (70 mg/kg)-induced anesthesia was performed.ResultsHDME revealed selective phosphodiesterase 4 (PDE4) inhibition with a therapeutic (PDE4H/PDE4L) ratio of 35.5in vitro.In vivo, HDME (3~30 μmol/kg, orally (p.o.)) dose-dependently and significantly attenuated the airway resistance (RL) and increased lung dynamic compliance (Cdyn), and decreased enhanced pause (Penh) values induced by methacholine in sensitized and challenged mice. It also significantly suppressed the increases in the numbers of total inflammatory cells, macrophages, lymphocytes, neutrophils, and eosinophils, and levels of cytokines, including interleukin (IL)-2, IL-4, IL-5, interferon-γ, and tumor necrosis factor-α in bronchoalveolar lavage fluid (BALF) of these mice. In addition, HDME (3~30 μmol/kg, p.o.) dose-dependently and significantly suppressed total and ovalbumin-specific immunoglobulin (Ig)E levels in the BALF and serum, and enhanced IgG2alevel in the serum of these mice.ConclusionsHDME exerted anti-inflammatory effects, including suppression of AHR, and reduced expressions of inflammatory cells and cytokines in this murine model, which appears to be suitable for studying the effects of drugs on atypical asthma and COPD, and for screening those on typical asthma. However, HDME did not influnce xylazine/ketamine-induced anesthesia. Thus HDME may have the potential for use in treating typical and atypical asthma, and COPD.
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Biochemistry (medical),Cell Biology,Clinical Biochemistry,Molecular Biology,General Medicine,Endocrinology, Diabetes and Metabolism
Reference57 articles.
1. Lee ME, Markowitz J, Lee JO, Lee H: Crystal structure of phosphodiesterase 4D and inhibitor complex (1). FEBS Lett. 2002, 530: 53-58. 10.1016/S0014-5793(02)03396-3.
2. Torphy TJ, Cieslinski LB: Characterization and selective inhibition of cyclic nucleotide phosphodiesterase isozymes in canine tracheal smooth muscle. Mol Pharmacol. 1990, 37: 206-214.
3. Kapui Z, Schaeffer P, Mikus EG, Boronkay E, Gyurky J, Herbert JM, Pascal M: Experimental studies on guanosine 3',5'-cyclic monophosphate levels and airway responsiveness of the novel phosphodiesterase type 5 inhibitor SR 265579 in guinea-pigs. Arzneimittelforschung. 1999, 49: 685-693.
4. de Boer J, Philpott AJ, van Amsterdam RG, Shahid M, Zaagsma J, Nicholson CD: Human bronchial cyclic nucleotide phosphodiesterase isoenzymes: biochemical and pharmacological analysis using selective inhibitors. Br J Pharmacol. 1992, 106: 1028-1034.
5. Silver PJ, Hamel LT, Perrone MH, Bentley RG, Bushover CR, Evans DB: Differential pharmacologic sensitivity of cyclic nucleotide phosphodiesterase isozymes isolated from cardiac muscle, arterial and airway smooth muscle. Eur J Pharmacol. 1988, 150: 85-94. 10.1016/0014-2999(88)90753-4.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献