Author:
Chuang Chi-Mu,Monie Archana,Hung Chien-Fu,Wu T-C
Abstract
Abstract
Background
There is an urgent need to develop new innovative therapies for the control of advanced cancer. The combination of antigen-specific immunotherapy with the employment of immunomodulatory agents has emerged as a potentially plausible approach for the control of advanced cancer.
Methods
In the current study, we explored the combination of the DNA vaccine encoding calreticulin (CRT) linked to human papillomavirus type 16 (HPV-16) E7 antigen (CRT/E7) with the TLR7 agonist imiquimod for their ability to generate E7-specific immune responses and antitumor effects in tumor-bearing mice.
Results
We observed that treatment with CRT/E7 DNA in combination with imiquimod leads to an enhancement in the E7-specific CD8+ T cell immune responses and a decrease in the number of myeloid-derived suppressor cells in the tumor microenvironment of tumor-bearing mice. Furthermore, treatment with CRT/E7 DNA in combination with imiquimod leads to significantly improved antitumor effects and prolonged survival in treated mice. In addition, treatment with imiquimod led to increased number of NK1.1+ cells and F4/80+ cells in the tumor microenvironment. Macrophages and NK1.1+ cells were found to play an important role in the antitumor effects mediated by treatment with CRT/E7 DNA in combination with imiquimod.
Conclusions
Thus, our data suggests that the combination of therapeutic HPV DNA vaccination with topical treatment with the TLR7 agonist imiquimod enhances the antitumor immunity induced by DNA vaccination. The current study has significant implications for future clinical translation.
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Biochemistry, medical,Cell Biology,Clinical Biochemistry,Molecular Biology,General Medicine,Endocrinology, Diabetes and Metabolism
Reference29 articles.
1. Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Meer Berends-van der DM, Vloon AP, Essahsah F, Fathers LM, Offringa R, Drijfhout JW, Wafelman AR, Oostendorp J, Fleuren GJ, Burg van der SH, Melief CJ: Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. The New England journal of medicine. 2009, 361: 1838-1847. 10.1056/NEJMoa0810097.
2. Donnelly JJ, Ulmer JB, Liu MA: DNA vaccines. Life sciences. 1997, 60: 163-172. 10.1016/S0024-3205(96)00502-4.
3. Gurunathan S, Klinman DM, Seder RA: DNA vaccines: immunology, application, and optimization. Annual review of immunology. 2000, 18: 927-974. 10.1146/annurev.immunol.18.1.927.
4. Hung CF, Wu TC: Improving DNA vaccine potency via modification of professional antigen presenting cells. Current opinion in molecular therapeutics. 2003, 5: 20-24.
5. Tsen SW, Paik AH, Hung CF, Wu TC: Enhancing DNA vaccine potency by modifying the properties of antigen-presenting cells. Expert review of vaccines. 2007, 6: 227-239. 10.1586/14760584.6.2.227.
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献