Author:
Ho Chih-Ming,Chang Shwu-Fen,Hsiao Chih-Chiang,Chien Tsai-Yen,Shih Daniel Tzu-Bi
Abstract
Abstract
Background
At least one-third of epithelial ovarian cancers are associated with the development of ascites containing heterogeneous cell populations, including tumor cells, inflammatory cells, and stromal elements. The components of ascites and their effects on the tumor cell microenvironment remain poorly understood. This study aimed to isolate and characterize stromal progenitor cells from the ascites of patients with epithelial ovarian adenocarcinoma (EOA).
Methods
Seventeen ascitic fluid samples and 7 fresh tissue samples were collected from 16 patients with EOA. The ascites samples were then cultured in vitro in varying conditions. Flow cytometry and immunocytochemistry were used to isolate and characterize 2 cell populations with different morphologies (epithelial type and mesenchymal type) deriving from the ascites samples. The in vitro cell culture model was established using conditional culture medium.
Results
The doubling times of the epithelial type and mesenchymal type cells were 36 h and 48 h, respectively, indicating faster growth of the epithelial type cells compared to the mesenchymal type cells. Cultured in vitro, these ascitic cells displayed the potential for self-renewal and long-term proliferation, and expressed the typical cancer stem/progenitor cell markers CD44high, CD24low, and AC133+. These cells also demonstrated high BMP-2, BMP4, TGF-β, Rex-1, and AC133 early gene expression, and expressed EGFR, integrin α2β1, CD146, and Flt-4, which are highly associated with tumorigenesis and metastasis. The epithelial type cells demonstrated higher cytokeratin 18 and E-cadherin expression than the mesenchymal type cells. The mesenchymal type cells, in contrast, demonstrated higher AC133, CD73, CD105, CD117, EGFR, integrin α2β1, and CD146 surface marker expression than the epithelial type cells.
Conclusion
The established culture system provides an in vitro model for the selection of drugs that target cancer-associated stromal progenitor cells, and for the development of ovarian cancer treatments.
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Biochemistry, medical,Cell Biology,Clinical Biochemistry,Molecular Biology,General Medicine,Endocrinology, Diabetes and Metabolism
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献