STAT2 hypomorphic mutant mice display impaired dendritic cell development and antiviral response

Author:

Chen Lan-Sun,Wei Pei-Chi,Liu Taming,Kao Chung-Hsuan,Pai Li-Mei,Lee Chien-Kuo

Abstract

Abstract Interferons (IFNs) are key regulators for both innate and adaptive immune responses. By screening ENU-mutagenized mice, we identified a pedigree- P117 which displayed impaired response to type I, but not type II, IFNs. Through inheritance test, genetic mapping and sequencing, we found a T to A point mutation in the 5' splice site of STAT2 intron 4–5, leading to cryptic splicing and frame shifting. As a result, the expression of STAT2 protein was greatly diminished in the mutant mice. Nonetheless, a trace amount of functional STAT2 protein was still detectable and was capable of inducing, though to a lesser extent, IFNα-downstream gene expressions, suggesting that P117 is a STAT2 hypomorphic mutant. The restoration of mouse or human STAT2 gene in P117 MEFs rescued the response to IFNα, suggesting that the mutation in STAT2 is most likely the cause of the phenotypes seen in the pedigree. Development of different subsets of lymphocytes appeared to be normal in the mutant mice except that the percentage and basal expression of CD86 in splenic pDC and cDC were reduced. In addition, in vitro Flt3L-dependent DC development and TLR ligand-mediated DC differentiation were also defective in mutant cells. These results suggest that STAT2 positively regulates DC development and differentiation. Interestingly, a severe impairment of antiviral state and increased susceptibility to EMCV infection were observed in the mutant MEFs and mice, respectively, suggesting that the remaining STAT2 is not sufficient to confer antiviral response. In sum, the new allele of STAT2 mutant reported here reveals a role of STAT2 for DC development and a threshold requirement for full functions of type I IFNs.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Biochemistry, medical,Cell Biology,Clinical Biochemistry,Molecular Biology,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3