Circulating microRNA signatures in mice exposed to lipoteichoic acid

Author:

Hsieh Ching-Hua,Yang Johnson Chia-Shen,Jeng Jonathan Chris,Chen Yi-Chun,Lu Tsu-Hsiang,Tzeng Siou-Ling,Wu Yi-Chan,Wu Chia-Jung,Rau Cheng-Shyuan

Abstract

Abstract Background Previously, we had identified a specific whole blood–derived microRNAs (miRNAs) signature in mice following in vivo injection of lipopolysaccharide (LPS) originated from Gram-negative bacteria. This study was designed to profile the circulating miRNAs expression in mice exposed to lipoteichoic acid (LTA) which is a major component of the wall of Gram-positive bacteria. Results C57BL/6 mice received intraperitoneal injections of 100 μg of LTA originated from Bacillus subtilis, Streptococcus faecalis, and Staphylococcus aureus were killed 6 h and the whole blood samples were obtained for miRNA expression analysis using a miRNA array (Phalanx miRNA OneArray® 1.0). Up-regulated expression of miRNA targets in the whole blood, serum and white blood cells (WBCs) of C57BL/6 and Tlr2 −/− mice upon LTA treatment in 10, 100, or 1000 ug concentrations was quantified at indicated time (2, 6, 24, and 72 h) using real-time RT-PCR and compared with that in the serum of C57BL/6 mice injected with 100 ug of LPS. A significant increase of 4 miRNAs (miR-451, miR-668, miR-1902, and miR-1904) was observed in the whole blood and the serum in a dose- and time-dependent fashion following LTA injection. Induction of miRNA occurred in the serum after 2 h and persisted for at least 6 h. No increased expression of these 4 miRNAs was found in the WBCs. Higher but not significant expression level of these 4 miRNAs were observed following LTA treatment in the serum of Tlr2 −/−against that of C57BL6 mice. In contrast, LPS exposure induced moderate expression of miR-451 but not of the other 3 miRNA targets. Conclusions We identified a specific circulating miRNA signature in mice exposed to LTA. That expression profile is different from those of mice exposed to LPS. Those circulating miRNAs induced by LTA or LPS treatment may serve as promising biomarkers for the differentiation between exposures to Gram-positive or Gram-negative bacteria.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Biochemistry, medical,Cell Biology,Clinical Biochemistry,Molecular Biology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3