Two simple methods to improve the accuracy of the genomic selection methodology

Author:

Montesinos-López Osval A.ORCID,Kismiantini ,Montesinos-López Abelardo

Abstract

Abstract Background Genomic selection (GS) is revolutionizing plant and animal breeding. However, still its practical implementation is challenging since it is affected by many factors that when they are not under control make this methodology not effective. Also, due to the fact that it is formulated as a regression problem in general has low sensitivity to select the best candidate individuals since a top percentage is selected according to a ranking of predicted breeding values. Results For this reason, in this paper we propose two methods to improve the prediction accuracy of this methodology. One of the methods consist in reformulating the GS (nowadays formulated as a regression problem) methodology as a binary classification problem. The other consists only in a postprocessing step that adjust the threshold used for classification of the lines predicted in its original scale (continues scale) to guarantee similar sensitivity and specificity. The postprocessing method is applied for the resulting predictions after obtaining the predictions using the conventional regression model. Both methods assume that we defined with anticipation a threshold, to divide the training data as top lines and not top lines, and this threshold can be decided in terms of a quantile (for example 80%, 90%, etc.) or as the average (or maximum) of the performance of the checks. In the reformulation method it is required to label as one those lines in the training set that are equal or larger than the specified threshold and as zero otherwise. Then we train a binary classification model with the conventional inputs, but using the binary response variable in place of the continuous response variable. The training of the binary classification should be done to guarantee a more similar sensitivity and specificity, to guarantee a reasonable probability of classification of the top lines. Conclusions We evaluated the proposed models in seven data sets and we found that the two proposed methods outperformed by large margin the conventional regression model (by 402.9% in terms of sensitivity, by 110.04% in terms of F1 score and by 70.96% in terms of Kappa coefficient, with the postprocessing methods). However, between the two proposed methods the postprocessing method was better than the reformulation as binary classification model. The simple postprocessing method to improve the accuracy of the conventional genomic regression models avoid the need to reformulate the conventional regression models as binary classification models with similar or better performance, that significantly improve the selection of the top best candidate lines. In general both proposed methods are simple and can easily be adopted for use in practical breeding programs, with the guarantee that will improve significantly the selection of the top best candidates lines.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3