Transcriptomic analysis of s-methoprene resistance in the lesser grain borer, Rhyzopertha dominica, and evaluation of piperonyl butoxide as a resistance breaker

Author:

Sakka Maria K.ORCID,Riga Maria,Ioannidis Panagiotis,Baliota Georgia V.,Tselika Martha,Jagadeesan Rajeswaran,Nayak Manoj K.,Vontas John,Athanassiou Christos G.

Abstract

Abstract Background The lesser grain borer, Rhyzopertha dominica is a serious pest of stored grains. Fumigation and contact insecticides play a major role in managing this pest globally. While insects are developing genetic resistance to chemicals, hormonal analogues such as s-methoprene play a key role in reducing general pest pressure as well as managing pest populations that are resistant to fumigants and neurotoxic contact insecticides. However, resistance to s-methoprene has been reported in R. dominica with some reports showing a remarkable high resistance, questioning the use of this compound and other related analogues in grain protection. The current study attempts to identify possible molecular mechanisms that contribute in resistance to s-methoprene in R. dominica. Results Transcriptome analysis of resistant and susceptible strains of this pest species identified a set of differentially expressed genes related to cytochrome P450s, indicating their potential role in resistance to s-methoprene. Laboratory bioassays were performed with s-methoprene treated wheat grains in presence and absence of piperonyl butoxide (PBO), a cytochrome P450 inhibitor. The results indicate that PBO, when applied alone, at least at the concentration tested here, had no effect on R. dominica adult emergence, but has a clear synergistic effect to s-methoprene. The number of produced progeny decreased in presence of the inhibitor, especially in the resistant strain. In addition, we also identified CYP complement (CYPome) of R. dominica, annotated and analysed phylogenetically, to understand the evolutionary relationships with other species. Conclusions The information generated in current study suggest that PBO can effectively be used to break resistance to s-methoprene in R. dominica.

Funder

European Union and Greek national funds

General Secretariat for Research and Technology

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3