Comprehensive evaluation of structural variant genotyping methods based on long-read sequencing data

Author:

Duan Xiaoke,Pan Mingpei,Fan Shaohua

Abstract

AbstractBackgroundStructural variants (SVs) play a crucial role in gene regulation, trait association, and disease in humans. SV genotyping has been extensively applied in genomics research and clinical diagnosis. Although a growing number of SV genotyping methods for long reads have been developed, a comprehensive performance assessment of these methods has yet to be done.ResultsBased on one simulated and three real SV datasets, we performed an in-depth evaluation of five SV genotyping methods, including cuteSV, LRcaller, Sniffles, SVJedi, and VaPoR. The results show that for insertions and deletions, cuteSV and LRcaller have similar F1 scores (cuteSV, insertions: 0.69–0.90, deletions: 0.77–0.90 and LRcaller, insertions: 0.67–0.87, deletions: 0.74–0.91) and are superior to other methods. For duplications, inversions, and translocations, LRcaller yields the most accurate genotyping results (0.84, 0.68, and 0.47, respectively). When genotyping SVs located in tandem repeat region or with imprecise breakpoints, cuteSV (insertions and deletions) and LRcaller (duplications, inversions, and translocations) are better than other methods. In addition, we observed a decrease in F1 scores when the SV size increased. Finally, our analyses suggest that the F1 scores of these methods reach the point of diminishing returns at 20× depth of coverage.ConclusionsWe present an in-depth benchmark study of long-read SV genotyping methods. Our results highlight the advantages and disadvantages of each genotyping method, which provide practical guidance for optimal application selection and prospective directions for tool improvement.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People's Republic of China

Science and Technology Commission of Shanghai Municipality

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3